精英家教网 > 高中数学 > 题目详情
设椭圆的左、右焦点分别为,上顶点为A,在x轴负半轴上有一点B,满足三点的圆与直线相切.
(1)求椭圆C的方程;
(2)过右焦点作斜率为k的直线与椭圆C交于M,N两点,线段MN的垂直平分线与x轴相交于点P(m,0),求实数m的取值范围.
(1);(2)

试题分析:(1)连接,因为可得      (1)
又因为的外接圆与直线相切,所以有    (1)
解由(1)(2)组成的方程组可得椭圆的标准方程.
(2)由(1)椭圆的标准方程是,所以,设直线的方程为:.由方程组:消去,由韦达定理求出
的表达式,写出线段MN的垂直平分线的方程,并求出的表达式,进而用函数的方法求其取值范围,要注意直线斜率不存在及斜率为0情况的讨论.
解:(1)连接,因为,所以
,则.                  3分
的外接圆圆心为,半径    4分
由已知圆心到直线的距离为,所以,解得,所以
所求椭圆方程为.                          6分
(2)因为,设直线的方程为:.
联立方程组:,消去.  7分

的中点为.                       8分
时,为长轴,中点为原点,则.          9分
时,垂直平分线方程
,所以 
因为,所以,可得,           12分
综上可得,实数的取值范围是                    13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点且离心率为
(1)求椭圆的方程;
(2)若斜率为的直线两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点的坐标分别为.直线相交于点,且它们的斜率之积是,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)设是曲线上的动点,直线分别交直线于点,线段的中点为,求直线与直线的斜率之积的取值范围;
(3)在(2)的条件下,记直线的交点为,试探究点与曲线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线 和椭圆,椭圆C的离心率为,连结椭圆的四个顶点形成四边形的面积为.
(1)求椭圆C的方程;
(2)若直线与椭圆C有两个不同的交点,求实数m的取值范围;
(3)当时,设直线与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2011•浙江)已知椭圆C1=1(a>b>0)与双曲线C2:x2=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )
A.a2=B.a2=3C.b2=D.b2=2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动圆:,则圆心的轨迹是(   )
A.直线  B.圆 C.抛物线的一部分 D.椭圆

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•浙江)如图F1、F2是椭圆C1+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是(  )

A.       B.       C.       D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的焦点为F1、F2,P是椭圆上一个动点,延长F1P到点Q,使|PQ|=|PF2|,则动点Q的轨迹为(  )
A.圆B.椭圆C.双曲线一支D.抛物线

查看答案和解析>>

同步练习册答案