精英家教网 > 高中数学 > 题目详情

【题目】下列说法错误的是 ( )

A. 的充分不必要条件;

B. 如果命题与命题pq都是真命题,那么命题一定是真命题.

C. 若命题p,则

D. 命题,则的否命题是:,则

【答案】A

【解析】

对于A中,”是“”的必要不充分条件;对于B中,根据简单的复合命题的真假关系,可得是正确的;对于C中,根据全称命题与存在性命题的关系,可得是正确额的;对于D中,根据命题的否命题的定义,可得是正确;

对于A中,”是“”的必要不充分条件,所以不正确;

对于B中,如果命题“”与命题“”都是真命题,可得是假命题,一定是真命题,所以是正确的;

对于C中,若命题,根据全称命题与存在性命题的关系,

可得是正确的;

对于D中,根据命题的否命题的定义,可知命题“若,则”的否命题是:“若,则是正确;故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了更好地了解鲸的生活习性,某动物保护组织在受伤的鲸身上安装了电子监测设备,从海岸线放归点处把它放归大海,并沿海岸线由西到东不停地对其进行跟踪观测。在放归点的正东方向有一观测站可以对鲸进行生活习性的详细观测。已知观测站的观测半径为.现以点为坐标原点、以由西向东的海岸线所在直线为轴建立平面直角坐标系,则可以测得鲸的行进路线近似的满足.

(1)若测得鲸的行进路线上一点的值;

(2)在(1)问的条件下,问:

当鲸运动到何处时,开始进入观测站的观测区域内?(计算结果精确到0.1)

当鲸运动到何处时,离观测站距离最近观测最便利)?(计算结果精确到0.1)

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=cos(x+ ),则下列结论错误的是( )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x= 对称
C.f(x+π)的一个零点为x=
D.f(x)在( ,π)单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若 的充分条件,求实数 的取值范围;

(2)若 ”为真命题,“”为假命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+a(ex﹣1+e﹣x+1)有唯一零点,则a=(  )
A.﹣
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标中,圆,圆

()在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示)

()求圆的公共弦的参数方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,分别是的中点.

(1)证明:平面平面

(2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为,实验30天共投入实验费用17700元.

(1)求的值及平均每天耗资最少时实验的天数;

(2)现有某知名企业对该项实验进行赞助,实验天共赞助.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).

查看答案和解析>>

同步练习册答案