【题目】已知函数f(x)= x3﹣ (a∈R).
(1)若a=1,求函数f(x)在[0,2]上的最大值;
(2)若对任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范围.
【答案】
(1)解:当a=1时,f(x)= ﹣x+ ,f′(x)=x2﹣1,
令f′(x)=0,得x1=﹣1,x2=1,
列表:
x | 0 | (0,1) | 1 | (1,2) | 2 |
f′(x) | ﹣1 | ﹣ | 0 | + | 3 |
f(x) | ↘ | ﹣ | ↗ |
∴当x∈[0,2]时,f(x)最大值为f(2)= .
(2)解:f′(x)=x2﹣a2=(x﹣a)(x+a),
令f′(x)=0,得x1=﹣a,x2=a,
①若a<0,在(0,﹣a)上,f′(x)<0,f(x)单调递减,在(﹣a,+∞)上,f′(x)>0,f(x)单调递增.
所以,f(x)在x=﹣a时取得最小值f(﹣a)=﹣ =a( ),
因为a<0, >0,所以f(﹣a)=a( )<0.
所以当a<0时,对任意x∈(0,+∞),f(x)>0不成立;
②若a=0,f′(x)=x2≥0,所以f(x)在(0,+∞)上是增函数,
所以当a=0时,有f(x)>f(0)=0;
③若a>0,在(0,a)上,f′(x)<0,f(x)单调递减,在(a,+∞)上,f′(x)>0,f(x)单调递增.
所以,f(x)在x=a时取得最小值f(a)= =﹣a( ),
令f(a)=﹣a( )>0,由a>0,得 <0,0<a< ,
所以当0<a< 时,对任意x>0,f(x)>0都成立.
综上,a的取值范围是[0, ]
【解析】(1)a=1时写出f(x),求出f′(x),解方程f′(x)=0,列出当x变化时f′(x)、f(x)的变化表,由表格可得函数在[0,2]上的最大值;(2)对任意x∈(0,+∞),有f(x)>0恒成立,等价于f(x)min>0,分a<0,a=0,a>0三种情况进行讨论,利用导数即可求得f(x)在(0,+∞)上的最小值,然后解不等式f(x)min>0可得a的范围;
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
科目:高中数学 来源: 题型:
【题目】已知f(x)= .
(1)判断函数f(x)的奇偶性并证明;
(2)证明f(x)是定义域内的增函数;
(3)解不等式f(1﹣m)+f(1﹣m2)>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知具有相关关系的两个变量之间的几组数据如下表所示:
(1)请根据上表数据在网格纸中绘制散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;
(3)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求这两个点都在直线的右下方的概率.
参考公式: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy 中,椭圆G的中心为坐标原点,左焦点为F1(﹣1,0),离心率e=.
(1)求椭圆G 的标准方程;
(2)已知直线l1:y=kx+m1与椭圆G交于 A,B两点,直线l2:y=kx+m2(m1≠m2)与椭圆G交于C,D两点,且|AB|=|CD|,如图所示.
①证明:m1+m2=0;
②求四边形ABCD 的面积S 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,且x>0时,f(x)=1+( )x
(1)求函数f(x)的解析式;
(2)画出函数f(x)的草图;
(3)利用图象直接写出函数f(x)的单调区间及值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x),g(x)都是定义在R上的函数,并满足:
1)f(x)=2axg(x),(a>0,a≠1);
2)g(x)≠0;
3)f(x)g′(x)<f′(x)g(x)且 + =5,则a= .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数, .
(1)当 (为自然对数的底数)时,求曲线在点处的切线方程;
(2)讨论函数的零点的个数;
(3)若对任意, 恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com