精英家教网 > 高中数学 > 题目详情

【题目】已知左、右焦点分别为的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点.

(I)求椭圆C的离心率和标准方程。

(II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线交椭圆C于P,Q两点,若AB为圆的直径,且直线的斜率大于1,求的取值范围.

【答案】(Ⅰ) ; (Ⅱ) .

【解析】

(Ⅰ)利用椭圆C过点,∵椭圆C关于直线x=c对称的图形过坐标原点,推出a=2c,然后求解椭圆C的离心率,标准方程.

(Ⅱ)设A(),B(),利用中点坐标公式以及平方差法求出AB的斜率,得到直线AB的方程,代入椭圆C的方程求出点的坐标,设F1R:y=k(x+1),联立,设P(x3,y3),Q(x4,y4),利用韦达定理,结合,化简|PF1||QF1|,通过,求解|PF1||QF1|的取值范围.

(Ⅰ)∵椭圆过点,∴,①

∵椭圆关于直线对称的图形过坐标原点,∴

,∴,②

由①②得

∴椭圆的离心率,标准方程为.

(Ⅱ)因为为圆的直径,所以点为线段的中点,

,则,,又

所以,则,故,则直线的方程为,即.代入椭圆的方程并整理得

,故直线的斜率.

,由,得

,则有.

所以=

因为,所以

的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂采用甲、乙两种不同生产方式生产某零件,现对两种生产方式所生产的这种零件的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为一等品;指标在区间的为二等品,现分别从甲、乙两种不同生产方式所生产的零件中,各自随机抽取100件作为样本进行检测,测试指标结果的频率分布直方图如图所示:

若从甲种生产方式生产的这100件零件中按等级,利用分层抽样的方法抽取5件,再从这5件零件中随机抽取3件,求至少有1件一等品的概率;

该厂所生产这种零件,若是一等品每件可售50元,若是二等品每件可售20甲种生产方式每生产一件零件无论是一等品还是二等品的成本为10元,乙种生产方式每生产一件零件无论是一等品还是二等品的成本为18将频率分布直方图中的频率视作概率,用样本估计总体比较在甲、乙两种不同生产方式下,哪种生产方式生产的零件所获得的平均利润较高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有

A. 72种 B. 36种 C. 24种 D. 18种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点在抛物线上,为坐标原点,,且.

(1)求抛物线的方程;

(2)过焦点,且斜率为1的直线与抛物线交于两点,线段的垂直平分线交抛物线两点,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为

1)求曲线C和直线的直角坐标系方程;

2)已知直线与曲线C相交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校体育教研组研发了一项新的课外活动项目,为了解该项目受欢迎程度,在某班男女中各随机抽取20名学生进行调研,统计得到如下列联表:

附:参考公式及数据

1)在喜欢这项课外活动项目的学生中任选1人,求选到男生的概率;

2)根据题目要求,完成2×2列联表,并判断是否有95%的把握认为喜欢该活动项目与性别有关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离

(1)求的方程;

(2)过的直线相交于两点,的垂直平分线相交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 )的左右焦点分别为 ,离心率为,点在椭圆上, ,过与坐标轴不垂直的直线与椭圆交于 两点.

(Ⅰ)求椭圆的方程;

(Ⅱ)若 的中点为,在线段上是否存在点,使得?若存在,求实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知为抛物线上一点,斜率分别为的直线PAPB分别交抛物线于点AB(不与点P重合).

1)证明:直线AB的斜率为定值;

2)若△ABP的内切圆半径为.

i)求△ABP的周长(用k表示);

ii)求直线AB的方程.

查看答案和解析>>

同步练习册答案