精英家教网 > 高中数学 > 题目详情
已知集合A={x|-2≤x≤10,x∈Z},m,n∈A,方程
x2
m
+
y2
n
=1
表示焦点在x轴上的椭圆,则这样的椭圆共有
45
45
个.
分析:根据题中方程表示焦点在x轴上的椭圆,得m>n>0.由m、n∈A,得m、n在从1到10的十个正整数中取值,由此利用排列组合公式,即可得到本题答案.
解答:解:∵方程
x2
m
+
y2
n
=1
表示焦点在x轴上的椭圆,
∴m>n>0
又∵集合A={x|-2≤x≤10,x∈Z},m,n∈A,
∴m、n在正整数1、2、3、…、9、10的十个数中取值
根据排列组合原理,可得符合题意的(m,n)共有C102=45个
故答案为:45
点评:本题给出含有字母参数的椭圆,求满足焦点在x轴的椭圆的个数.着重考查了椭圆的标准方程、排列组合公式等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求实数k的取值范围.

查看答案和解析>>

同步练习册答案