精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若曲线在点处的切线斜率为1,求函数的单调区间;

(2)若时,恒成立,求实数的取值范围.

【答案】(Ⅰ)在R上单调递增;(Ⅱ).

【解析】试题分析:(Ⅰ)根据曲线在点处的切线斜率为1,可求出参数的值,再对导函数的零点进行分类讨论,即可求出函数的单调区间;(Ⅱ)由,构造辅助函数,再对进行求导,讨论的取值范围,利用函数单调性判断函数的最值,进而确定的取值范围.

试题解析:(Ⅰ)∵

,记

x<0时, 单减;

x>0时,单增,

恒成立,所以上单调递增.

(Ⅱ)∵,令

时,上单增,∴

i)当时,恒成立,即上单增,

,所以

ii)当时,∵上单增,且

时,

使,即

时,,即单减;

时,,即单增.

,由

上单调递增,

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一个古典型(或几何概型)中,若两个不同随机事件概率相等,则称是“等概率事件”,如:随机抛掷一枚骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”,关于“等概率事件”,以下判断正确的是__________.

①在同一个古典概型中,所有的基本事件之间都是“等概率事件”;

②若一个古典概型的事件总数为大于2的质数,则在这个古典概型中除基本事件外没有其他“等概率事件”;③因为所有必然事件的概率都是1,所以任意两个必然事件是“等概率事件”;

④随机同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,经过点作两条互相垂直的直线,直线轴正半轴于点,直线轴正半轴于点

1)如果,求点的坐标.

2)试问是否总存在经过 四点的圆?如果存在,求出半径最小的圆的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某年级举办团知识竞赛.四个班报名人数如下:

班别

人数

45

60

30

15

年级在报名的同学中按分层抽样的方式抽取10名同学参加竞赛,每位参加竞赛的同学从10个关于团知识的题目中随机抽取4个作答,全部答对的同学获得一份奖品.

(Ⅰ)求各班参加竞赛的人数;

(Ⅱ)若班每位参加竞赛的同学对每个题目答对的概率均为,求班恰好有2位同学获得奖品的概率;

(Ⅲ)若这10个题目,小张同学只有2个答不对,记小张答对的题目数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB.

(1)求角B的大小;

(2)若b=3,sinC=2sinA,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的等比数列{an}中,a4与a14的等比中项为 ,则2a7+a11的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an= (n∈N* , n≥2),数列{bn}满足关系式bn= (n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两个粮库要向A,B两镇运送大米,已知甲库可调出100 t大米,乙库可调出80 t大米,A镇需70 t大米,B镇需110 t大米.两库到两镇的路程和运费如下表:

这两个粮库各运往A,B两镇多少t大米,才能使总运费最省?此时总运费是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:

x

15.0

25.58

30.0

36.6

44.4

y

39.4

42.9

42.9

43.1

49.2

(1)x为解释变量,y为预报变量,作出散点图;

(2)yx之间的线性回归方程,对于基本苗数56.7预报其有效穗;

(3)计算各组残差,并计算残差平方和;

(4)R2,并说明残差变量对有效穗的影响占百分之几.

查看答案和解析>>

同步练习册答案