精英家教网 > 高中数学 > 题目详情
5.函数f(x)=ax(a>0,a≠1)的图象恒过点(  )
A.(0,0)B.(0,1)C.(1,0)D.(a,0)

分析 根据指数函数的单调性和特殊点,函数f(x)=ax(a>0且a≠1)的图象恒过点(0,1).

解答 解:由指数函数的定义和性质可得,
函数f(x)=ax(a>0且a≠1)的图象恒过点(0,1),
故选:B.

点评 本题主要考查指数函数的单调性和特殊点,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项和Sn满足:Sn=An2+Bn,且a1=2,a2=5.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在数列{an}中,an-1=2an,若a5=4,则a4a5a6=64.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax.
(1)当a=2时,求函数f(x)的极值;
(2)若对任意的a∈(-3,-2),x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=2x2-2x-3有以下4个结论:
①定义域为R,
②递增区间为[1,+∞)
③是非奇非偶函数;
④值域是[$\frac{1}{16}$,∞).
其中正确的结论是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数f(x)=e|x-a|(a∈R)满足f(1+x)=f(-x),且f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是(-∞,-$\frac{1}{2}$]∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$=0,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{c}$|=$\sqrt{19}$,则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.60°B.45°C.30°D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将一个直角三角形绕一直角边所在直线旋转一周,所得的几何体为(  )
A.一个圆台B.两个圆锥C.一个圆柱D.一个圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若二次函数满足f(x+1)-f(x)=2x+3,且f(0)=3
(1)求f(x)的解析式;
(2)设g(x)=f(x)-kx,求g(x)在[0,2]的最小值ϕ(k)的表达式.

查看答案和解析>>

同步练习册答案