£¨2012•¸£ÖÝÄ£Ä⣩Èçͼ£¬Ôڱ߳¤Îª4µÄÁâÐÎABCDÖУ¬¡ÏDAB=60¡ã£®µãE¡¢F·Ö±ðÔÚ±ßCD¡¢CBÉÏ£¬µãEÓëµãC¡¢D²»Öغϣ¬EF¡ÍAC£¬EF¡ÉAC=O£®ÑØEF½«¡÷CEF·­ÕÛµ½¡÷PEFµÄλÖã¬Ê¹Æ½ÃæPEF¡ÍƽÃæABFED£®
£¨¢ñ£©ÇóÖ¤£ºBD¡ÍƽÃæPOA£»
£¨¢ò£©µ±PBÈ¡µÃ×îСֵʱ£¬Çë½â´ðÒÔÏÂÎÊÌ⣺
£¨i£©ÇóËÄÀâ׶P-BDEFµÄÌå»ý£»
£¨ii£©ÈôµãQÂú×ã
AQ
=¦Ë
QP
 £¨¦Ë£¾0£©£¬ÊÔ̽¾¿£ºÖ±ÏßOQÓëƽÃæPBDËù³É½ÇµÄ´óСÊÇ·ñÒ»¶¨´óÓÚ
¦Ð
4
£¿²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨¢ñ£©ÀûÓÃÁâÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±Ö¤Ã÷BD¡ÍAO£¬Ö¤Ã÷PO¡ÍƽÃæABFED£¬¿ÉµÃPO¡ÍBD£¬ÀûÓÃÏßÃæ´¹Ö±µÄÅж¨£¬¿ÉµÃBD¡ÍƽÃæPOA£»
£¨¢ò£©½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz£®£¨¢¡£©ÉèAO¡ÉBD=H£¬PO=x£¬Ôò
PB
=
OB
-
OP
=£¨ 2
3
-x£¬2£¬-x£©£¬´Ó¶øÈ·¶¨PBµÄ×îСֵ£¬½ø¶ø¿ÉµÃËÄÀâ׶P-BDEFµÄÌå»ý£»
£¨¢¢£©È·¶¨
OQ
µÄ×ø±ê£¬Çó³öƽÃæPBDµÄ·¨ÏòÁ¿
n
=(1£¬0£¬1)
£¬ÀûÓÃÏòÁ¿µÄ¼Ð½Ç¹«Ê½¿ÉÇóÖ±ÏßOQÓëƽÃæPBDËù³ÉµÄ½Ç£¬´Ó¶ø¿ÉµÃ½áÂÛ³ÉÁ¢£®
½â´ð£º£¨¢ñ£©Ö¤Ã÷£º¡ßÁâÐÎABCDµÄ¶Ô½ÇÏß»¥Ïà´¹Ö±£¬
¡àBD¡ÍAC£¬¡àBD¡ÍAO£¬
¡ßEF¡ÍAC£¬¡àPO¡ÍEF£®
¡ßƽÃæPEF¡ÍƽÃæABFED£¬Æ½ÃæPEF¡ÉƽÃæABFED=EF£¬ÇÒPO?ƽÃæPEF£¬
¡àPO¡ÍƽÃæABFED£¬
¡ßBD?ƽÃæABFED£¬¡àPO¡ÍBD£®
¡ßAO¡ÉPO=O£¬¡àBD¡ÍƽÃæPOA£®¡­£¨4·Ö£©
£¨¢ò£©Èçͼ£¬ÒÔOΪԭµã£¬½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵO-xyz£®£¨5·Ö£©
£¨¢¡£©ÉèAO¡ÉBD=H£®ÒòΪ¡ÏDAB=60¡ã£¬ËùÒÔ¡÷BDCΪµÈ±ßÈý½ÇÐΣ¬
¹ÊBD=4£¬HB=2£¬HC=2
3
£®
ÓÖÉèPO=x£¬ÔòOH=2
3
-x£¬OA=4
3
-x£®
ËùÒÔO£¨0£¬0£¬0£©£¬P£¨0£¬0£¬x£©£¬B£¨2
3
-x£¬2£¬0£©£¬
¹Ê
PB
=
OB
-
OP
=£¨ 2
3
-x£¬2£¬-x£©£¬£¨6·Ö£©
ËùÒÔ|
PB
|=
2(x-
3
)2+10
£¬
¡àµ±x=
3
ʱ£¬|PB|min=
10
£®
´ËʱPO=
3
£¬OH=
3
£¨7·Ö£©
ÓÉ£¨¢ñ£©Öª£¬PO¡ÍƽÃæABFED£¬ËùÒÔVP-BDEF=
1
3
(
3
4
¡Á42-
3
4
¡Á22)¡Á
3
=3£®£¨8·Ö£©
£¨¢¢£©ÉèµãQµÄ×ø±êΪ£¨a£¬0£¬c£©£¬ÓÉ£¨i£©Öª£¬OP=
3
£¬ÔòA£¨3
3
£¬0£¬0£©£¬B£¨
3
£¬2£¬0£©£¬D£¨
3
£¬-2£¬0£©£¬P£¨0£¬0£¬
3
£©£®
ËùÒÔ
AQ
=(a-3
3
£¬0£¬c)£¬
QP
=(-a£¬0£¬
3
-c)
£¬£¨9·Ö£©
¡ß
AQ
=¦Ë
QP
 £¨¦Ë£¾0£©£¬
¡à
a-3
3
=-¦Ëa
c=
3
¦Ë-¦Ëc
£¬¡à
a=
3
3
¦Ë+1
c=
3
¦Ë
¦Ë+1
£®
¡àQ£¨
3
3
¦Ë+1
£¬
3
¦Ë
¦Ë+1
£©£¬
¡à
OQ
=£¨
3
3
¦Ë+1
£¬0£¬
3
¦Ë
¦Ë+1
£©£®    £¨10·Ö£©
ÉèƽÃæPBDµÄ·¨ÏòÁ¿Îª
n
=(x£¬y£¬z)
£¬Ôò
n
PB
=0£¬
n
BD
=0
£®
¡ß
PB
=(
3
£¬2£¬-
3
)£¬
BD
=(0£¬-4£¬0)
£¬¡à
3
x+2y-
3
z=0
-4y=0
£¬
È¡x=1£¬½âµÃ£ºy=0£¬z=1£¬ËùÒÔ
n
=(1£¬0£¬1)
£®£¨11·Ö£©
ÉèÖ±ÏßOQÓëƽÃæPBDËù³ÉµÄ½Ç¦È£¬
¡àsin¦È=|cos£¼
OQ
£¬
n
£¾
|=
|3+¦Ë|
2
9+¦Ë2
=
1
2
¡Á
1+
6¦Ë
9+¦Ë2
£®£¨12·Ö£©
Ó֡ߦˣ¾0¡àsin¦È£¾
2
2
£®£¨13·Ö£©
¡ß¦È¡Ê[0£¬
¦Ð
2
]£¬¡à¦È£¾
¦Ð
4
£®
Òò´ËÖ±ÏßOQÓëƽÃæPBDËù³É½Ç´óÓÚ
¦Ð
4
£¬¼´½áÂÛ³ÉÁ¢£® £¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éÏßÃæ´¹Ö±£¬¿¼²éÏßÃæ½Ç£¬¿¼²éÀûÓÿռäÏòÁ¿½â¾öÁ¢Ì弸ºÎÎÊÌ⣬ȷ¶¨Æ½ÃæµÄ·¨ÏòÁ¿Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¸£ÖÝÄ£Ä⣩ÔÚÊýÁÐ{an}ÖУ¬a1=2£¬µã£¨an£¬an+1£©£¨n¡ÊN*£©ÔÚÖ±Ïßy=2xÉÏ£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èôbn=log2an£¬ÇóÊýÁÐ
1bn¡Ábn+1
µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¸£ÖÝÄ£Ä⣩ÔÚÔ¼ÊøÌõ¼þ
x¡Ü1
y¡Ü2
x+y-1¡Ý0
Ï£¬Ä¿±êº¯Êýz=ax+by£¨a£¾0£¬b£¾0£©µÄ×î´óֵΪ1£¬ÔòabµÄ×î´óÖµµÈÓÚ
1
8
1
8
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¸£ÖÝÄ£Ä⣩¼ÙÉèij°à¼¶½ÌÊÒ¹²ÓÐ4ÉÈ´°»§£¬ÔÚÿÌìÉÏÎçµÚÈý½Ú¿ÎÉÏ¿ÎÔ¤±¸ÁåÉùÏìÆðʱ£¬Ã¿ÉÈ´°»§»ò±»³¨¿ª»ò±»¹Ø±Õ£¬ÇÒ¸ÅÂʾùΪ0.5£¬¼Ç´Ëʱ½ÌÊÒÀﳨ¿ªµÄ´°»§¸öÊýΪX£®
£¨¢ñ£©ÇóXµÄ·Ö²¼ÁУ»
£¨¢ò£©Èô´Ëʱ½ÌÊÒÀïÓÐÁ½ÉÈ»òÁ½ÉÈÒÔÉϵĴ°»§±»¹Ø±Õ£¬°à³¤¾Í»á½«¹Ø±ÕµÄ´°»§È«²¿³¨¿ª£¬·ñÔòά³ÖÔ­×´²»±ä£®¼ÇÿÌìÉÏÎçµÚÈý½Ú¿ÎÉÏ¿Îʱ¸Ã½ÌÊÒÀﳨ¿ªµÄ´°»§¸öÊýΪy£¬ÇóyµÄÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¸£ÖÝÄ£Ä⣩sin47¡ãcosl3¡ã+sinl3¡ãsin43¡ãµÄÖµµÈÓÚ
3
2
3
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•¸£ÖÝÄ£Ä⣩Èçͼ£¬Ôڱ߳¤Îª4µÄÁâÐÎABCDÖУ¬¡ÏDAB=60¡ã£®µãE¡¢F·Ö±ðÔÚ±ßCD¡¢CBÉÏ£¬µãEÓëµãC¡¢D²»Öغϣ¬EF¡ÍAC£¬EF¡ÉAC=O£®ÑØEF½«¡÷CEF·­ÕÛµ½¡÷PEFµÄλÖã¬Ê¹Æ½ÃæPEF¡ÍƽÃæABFED£®
£¨¢ñ£©ÇóÖ¤£ºBD¡ÍƽÃæPOA£»
£¨¢ò£©¼ÇÈýÀâ׶P-ABDÌå»ýΪV1£¬ËÄÀâ׶P-BDEFÌå»ýΪV2£®Çóµ±PBÈ¡µÃ×îСֵʱµÄV1£ºV2Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸