精英家教网 > 高中数学 > 题目详情
15.如果M={x|y=$\sqrt{2-x}$+1nx},N={y|y=2-|x|},那么M∩N=(  )
A.(0,1)B.(0,1]C.(0,2)D.(0,2]

分析 分别求出集合的等价条件,利用集合的基本运算进行求解即可.

解答 解:由$\left\{\begin{array}{l}{2-x≥0}\\{x>0}\end{array}\right.$得$\left\{\begin{array}{l}{x≤2}\\{x>0}\end{array}\right.$,即0<x≤2,即M=(0,2],
y=2-|x|=y=($\frac{1}{2}$)|x|∈(0,1],
即N=(0,1],
则M∩N=(0,1],
故选:B

点评 本题主要考查集合的基本运算,根据函数的性质分别求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.判断函数f(x)=$\frac{1}{{x}^{2}}$+$\frac{4}{x}$+3的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图细图所示,则该几何体的体积为(  )
A.12B.13C.18D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.命题P:方程$\frac{{x}^{2}}{m+2}$-$\frac{{y}^{2}}{3-m}$=1表示双曲线:命题q:抛物线y2=mx(m>0)的焦点到其准线的距离大于1,已知p∨q为真,p∧q为假,则实败m的取值范围为-2≤m≤2或m≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{m}$=$\overrightarrow{a}$+3$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$-k$\overrightarrow{b}$.
(1)若$\overrightarrow{n}$⊥$\overrightarrow{a}$,求k的值;
(2)当k=2时,求$\overrightarrow{m}$与$\overrightarrow{n}$夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π),求cos(θ-$\frac{π}{3}$)+cotθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b,不等式f(x)≤3的解集为[1,2].
(1)求f(x)的解析式;
(2)求函数f(x)在[m,m+1](m∈R)上的最小值g(m).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.角速度为$\frac{π}{4}$的质点P从点(-1,0)逆时针沿单位圆x2+y2=1运动,经过17个时间单位后,点P的坐标是(  )
A.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)B.(-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)C.($\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)D.(-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在(0,+∞)上的单调函数,且对任意的正数x,y都有f(x•y)=f(x)+f(y),若正项数列{an}的前n项和为Sn,且满足f(Sn+2)-f(an)=f(3)(n∈N*),则a6=(  )
A.$\frac{1}{2}×{({\frac{3}{2}})^6}$B.$\frac{1}{2}×{({\frac{3}{2}})^5}$C.${({\frac{3}{2}})^5}$D.${({\frac{3}{2}})^6}$

查看答案和解析>>

同步练习册答案