精英家教网 > 高中数学 > 题目详情
12.已知sinα+cosα=$\frac{4}{5}$,求sinαcosα的值.

分析 由已知得(sinα+cosα)2=$\frac{16}{25}$,从而1+2sinαcosα=$\frac{16}{25}$,由此能求出sinαcosα的值.

解答 解:∵sinα+cosα=$\frac{4}{5}$,
∴(sinα+cosα)2=$\frac{16}{25}$,
∴sin2α+cos2α+2sinαcosα=1+2sinαcosα=$\frac{16}{25}$,
∴sinαcosα=-$\frac{9}{50}$.

点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知点A(8,-5)和B(0,b)的距离为17,则b的值为(  )
A.10B.-20C.-20或10D.20或-10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求下列函数最大值和最小值,并写出取得最值时x的集合:y=2sin(2x+$\frac{π}{3}$)(-$\frac{π}{6}$≤x≤$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(540°+α)=-$\frac{4}{5}$,且α∈(0,90°),求cos(α-540°)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.A={(x,y)|x-y=3},B={(x,y)|3x+y=1},那么A∩B={(1,-2)}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知两个单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$满足$\overrightarrow{{e}_{1}}$⊥($\sqrt{2}$$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$),则单位向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列方程中表示椭圆的是(  )
A.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=4B.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2
C.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=6D.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$-$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在极坐标系中,O是极点,设点A,B的极坐标分别是(2$\sqrt{3}$,$\frac{π}{6}$),(3,$\frac{2π}{3}$),则O点到直线AB的距离是$\frac{6\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知各项均为正数的等比数列{an},a4a5a6=8,a10a11a12=12,则a7a8a9=(  )
A.6$\sqrt{6}$B.9C.10D.4$\sqrt{6}$

查看答案和解析>>

同步练习册答案