精英家教网 > 高中数学 > 题目详情

【题目】某公司计划购买2台机器该种机器使用三年后即被淘汰.机器有一易损零件在购进机器时可以额外购买这种零件作为备件每个200元.在机器使用期间如果备件不足再购买则每个500元.现需决策在购买机器时应同时购买几个易损零件为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数得下面柱状图:

以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率X表示2台机器三年内共需更换的易损零件数n表示购买2台机器的同时购买的易损零件数.

(1)X的分布列;

(2)若要求P(Xn)0.5确定n的最小值;

(3)以购买易损零件所需费用的期望值为决策依据n19n20之中选其一应选用哪个?

【答案】(1) 见解析;(2)19. (3)n19.

【解析】试题分析:(1)确定X 的可能取值,求其概率即可得到X的分布列。

(2)根据(1)中求得的概率,可得到P(X≤18)以及P(X≤19)的概率值,即可确定n最小值为19。

(3)求得n=19,n=20时的数学期望,比较大小,所需费用期望值较小的,即n的取值。

试题解析(1)由柱状图并以频率代替概率可得一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.40.20.2

从而P(X16)0.2×0.20.04

P(X17)2×0.2×0.40.16

P(X18)2×0.2×0.20.4×0.40.24

P(X19)2×0.2×0.22×0.4×0.20.24

P(X20)2×0.2×0.40.2×0.20.2

P(X21)2v0.2×0.20.08

P(X22)0.2×0.20.04.

X的分布列为

X

16

17

18

19

20

21

22

P

0.04

0.16

0.24

0.24

0.2

0.08

0.04

(2)(1)P(X18)0.44

P(X19)0.68n的最小值为19.

(3)Y表示2台机器在购买易损零上所需的费用(单位:元)

n19E(Y)19×200×0.68(19×200500)×0.2(19×2002×500)×

008(19×2003×500)×0.044040.

n20E(Y)20×200×0.88(20×200500)×0.08(20×2002×500)×0.044080.

可知当n19时所需费用的期望值小于n20时所需费用的期望值故应选n19.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (m,n∈R)在x=1处取得极值2.

(1)求f(x)的解析式;

(2)k为何值时,方程f(x)-k=0只有1个根

(3)设函数g(x)=x2-2ax+a,若对于任意x1∈R,总存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数.时, .

(1) 求曲线在点处的切线方程;

(2) 若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知坐标平面上动点与两个定点 ,且.

(1)求点的轨迹方程,并说明轨迹是什么图形;

(2)记(1)中轨迹为,过点的直线所截得的线段长度为8,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等式x4a1x3a2x2a3xa4(x1)4b1(x1)3b2(x1)2b3(x1)b4定义映射f(a1a2a3a4)(b1b2b3b4)f(4,3,2,1)(  )

A. (1,2,3,4) B. (0,3,4,0)

C. (0,-3,4,-1) D. (1,0,2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

1)求关于的线性回归方程;

2)利用()中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年,世界乒乓球锦标赛在德国的杜赛尔多夫举行.整个比赛精彩纷呈,参赛选手展现出很高的竞技水平,为观众奉献了多场精彩对决.图1(扇形图)和表1是其中一场关键比赛的部分数据统计.两位选手在此次比赛中击球所使用的各项技术的比例统计如图1.在乒乓球比赛中,接发球技术是指回接对方发球时使用的各种方法.选手乙在比赛中的接发球技术统计如表1,其中的前4项技术统称反手技术,后3项技术统称为正手技术.

图1

选手乙的接发球技术统计表

技术

反手拧球

反手搓球

反手拉球

反手拨球

正手搓球

正手拉球

正手挑球

使用次数

20

2

2

4

12

4

1

得分率

55%

50%

0%

75%

41.7%

75%

100%

表1

(Ⅰ)观察图1,在两位选手共同使用的8项技术中,差异最为显著的是哪两项技术?

(Ⅱ)乒乓球接发球技术中的拉球技术包括正手拉球和反手拉球.从表1统计的选手乙的所有拉球中任取两次,至少抽出一次反手拉球的概率是多少?

(Ⅲ)如果仅从表1中选手乙接发球得分率的稳定性来看(不考虑使用次数),你认为选手乙的反手技术更稳定还是正手技术更稳定?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.

(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润(单位:元)关于当天需求量(单位:枝, )的函数解析式.

(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

以100天记录的各需求量的频率作为各需求量发生的概率.

(1)若花店一天购进17枝玫瑰花, 表示当天的利润(单位:元),求的分布列及数学期望;

(2)若花店计划一天购进16枝或17枝玫瑰花,以利润角度看,你认为应购进16枝好还是17枝好?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间

(2)当时,求函数上的最小值

查看答案和解析>>

同步练习册答案