已知函数f(x)=a-是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在n>m>0,使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由.
(3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.
(1)由已知,可得f(x)=a-的定义域为D=(-∞,)∪
(,+∞).
又y=f(x)是偶函数,故定义域D关于原点对称.
于是,b=0(否则,当b≠0时,有-∈D且D,即D必不关于原点对称).
又对任意x∈D,有f(x)=f(-x),可得b=0.
因此所求实数b=0.
(2)由(1),可知f(x)=a-(D=(-∞,0)∪(0,+∞)).
观察函数f(x)=a-的图象,可知:f(x)在区间(0,+∞)上是增函数,
又n>m>0,
∴y=f(x)在区间[m,n]上是增函数.
因y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n].
∴有,
即方程1-=x,也就是2x2-2x+1=0有两个不相等的正根.
∵Δ=4-8<0,∴此方程无解.
故不存在正实数m,n满足题意.
(3)由(1),可知f(x)=a-(D=(-∞,0)∪(0,+∞)).
观察函数f(x)=a-的图象,
可知:f(x)在区间(0,+∞)上是增函数,
f(x)在区间(-∞,0)上是减函数.
因y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],故必有m、n同号.
①当0<m<n时,f(x)在区间[m,n]上是增函数,有,即方程x=a-,也就是2x2-2ax+1=0有两个不相等的正实数根,因此,解得a>(此时,m、n(m<n)取方程2x2-2ax+1=0的两根即可).
②当m<n<0时,f(x)在区间[m,n]上是减函数,有,化简得(m-n)a=0,解得a=0(此时,m、n(m<n)的取值满足mn=,且m<n<0即可).
综上所述,所求实数a的取值范围是a=0或a>.
科目:高中数学 来源:2012-2013学年江西省南昌市高一5月联考数学卷(解析版) 题型:解答题
已知函数f(x)= (a、b为常数),且方程f(x)-x+12=0有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>1,解关于x的不等式f(x)< .
查看答案和解析>>
科目:高中数学 来源:2015届辽宁盘锦市高一第一次阶段考试数学试卷(解析版) 题型:解答题
(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省莱芜市高三上学期10月测试理科数学 题型:解答题
(本小题满分l2分)
已知函数f(x)=a-
(1)求证:函数y=f(x)在(0,+∞)上是增函数;
(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省十二校高三第一次联考数学文卷 题型:解答题
( (本小题满分13分)
已知函数f(x)=(a-1)x+aln(x-2),(a<1).
(1)讨论函数f(x)的单调性;
(2)设a<0时,对任意x1、x2∈(2,+∞),<-4恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届黑龙江省高一期末考试文科数学 题型:解答题
(12分)已知函数f(X)=㏒a(ax-1) (a>0且a≠1)
(1)求函数的定义域 (2)讨论函数f(X)的单调性
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com