精英家教网 > 高中数学 > 题目详情
函数f(x)=x3+ax2-bx+c,a,b,c∈R,已知方程f(x)=0有三个实根x1,x2,x3,即f(x)=(x-x1)(x-x2)(x-x3
(1)求x1+x2+x3,x1x2+x2x3+x1x3和x1x2x3的值.(结果用a,b,c表示)
(2)若a∈Z,b∈Z且|b|<2,f(x)在x=α,x=β处取得极值且-1<α<0<β<1,试求此方程三个根两两不等时c的取值范围.
分析:(1)由已知,x3+ax2-bx+c=(x-x1)(x-x2)(x-x3),比较两边系数,即得结果;
(2)由已知f′(x)=3x2+2ax-b=0有两个不等的实根α,β,因为-1<α<0<β<1,根据实根分布,列出关于c的不等关系,解之得此方程三个根两两不等时c的取值范围.
解答:解:(1)由已知,x3+ax2-bx+c=(x-x1)(x-x2)(x-x3),
比较两边系数,得x1+x2+x3=-a,x1x2+x2x3+x3x1=-b,x1x2x3=-c.
(2)由已知f′(x)=3x2+2ax-b=0有两个不等的实根α,β,
因为-1<α<0<β<1,由实根分布,则
3+2a-b>0
-b<0
3-2a-b>0

由b∈Z,|b|<2,b>0,则b=1.
再代入上述不等式,
又有:2a>-2,2a<2,且a∈Z,
∴a=0,
所以f′(x)=3x2-1
α=-
3
3
,β=
3
3

且f(x)在x=-
3
3
处取得极大值x=
3
3
取得极小值,
故f(x)=0要有三个不等根,则必须
f(-
3
3
)>0
f(
3
3
)<0

即:
(-
3
3
)
3
-(-
3
3
)+c>0
(
3
3
)
3
-
3
3
+c<0
,⇒
c>-
2
3
9
c<
2
3
9

解得-
2
3
9
<c<
2
3
9

∴此方程三个根两两不等时c的取值范围是:-
2
3
9
<c<
2
3
9
点评:本小题主要考查函数在某点取得极值的条件、一元二次方程的根的分布与系数的关系、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•东城区一模)已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波模拟)已知函数f(x)=x3+ax2-a2x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x1、x2、x3∈[0,1],总存在以f(x1)、f(x2)、f(x3)为三边长的三角形,试求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)=x3+ax2-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是(  )

查看答案和解析>>

同步练习册答案