精英家教网 > 高中数学 > 题目详情

【题目】已知点、点及抛物线.

1)若直线过点及抛物线上一点,当最大时求直线的方程;

2轴上是否存在点,使得过点的任一条直线与抛物线交于点,且点到直线的距离相等?若存在,求出点的坐标;若不存在,说明理由.

【答案】1;(2.

【解析】

1)根据题意,设过点的直线方程为:,与.联立得: 然后再利用当直线与抛物线相切时,最大求解。

2)先假设存在点,设过点的直线方程为:,与.联立得:,根据点到直线的距离相等,有关于x轴对称,即求解。

1)根据题意,设过点的直线方程为:

.联立得:

直线过点及抛物线上一点

最大时,则直线与抛物线相切,

所以

解得

所以直线方程为:.

2)假设存在点,设过点的直线方程为:

.联立得:

由韦达定理得:

因为点到直线的距离相等,

所以关于x轴对称,

所以

所以

解得.

所以存在,点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线E过点,过抛物线E上一点作两直线PMPN与圆C相切,且分别交抛物线EMN两点.

(1)求抛物线E的方程,并求其焦点坐标和准线方程;

(2)若直线MN的斜率为,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线C的参数方程为m为参数),以坐标点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+)=1

1)求直线l的直角坐标方程和曲线C的普通方程;

2)已知点M 20),若直线l与曲线C相交于PQ两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前项中的最大项为,最小项为,设

1)若,求数列的通项公式;

2)若,求数列的前项和

3)若数列是等差数列,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某动漫影视制作公司长期坚持文化自信,不断挖掘中华优秀传统文化中的动漫题材,创作出一批又一批的优秀动漫影视作品,获得市场和广大观众的一致好评,同时也为公司赢得丰厚的利润.该公司年至年的年利润关于年份代号的统计数据如下表(已知该公司的年利润与年份代号线性相关).

年份

年份代号

年利润(单位:亿元)

)求关于的线性回归方程,并预测该公司年(年份代号记为)的年利润;

)当统计表中某年年利润的实际值大于由()中线性回归方程计算出该年利润的估计值时,称该年为级利润年,否则称为级利润年.将()中预测的该公司年的年利润视作该年利润的实际值,现从年至年这年中随机抽取年,求恰有年为级利润年的概率.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.

1)求曲线的普通方程及直线的直角坐标方程;

2)求曲线上的点到直线的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年篮球世界杯在中国举行,中国男篮由于主场作战而备受观众瞩目.为了调查国人对中国男篮能否进入十六强持有的态度,调查人员随机抽取了男性观众与女性观众各100名进行调查,所得情况如下表所示:

男性观众

女性观众

认为中国男篮能够进入十六强

60

认为中国男篮不能进入十六强

若在被抽查的200名观众中随机抽取1人,抽到认为中国男篮不能进入十六强的女性观众的概率为.

1)完善上述表格;

2)是否有99%的把握认为性别与对中国男篮能否进入十六强持有的态度有关?

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处的切线垂直于轴,求函数的极值;

(Ⅱ)若函数有两个零点,求实数的取值范围,并证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,证明:函数有两个零点.

2)若函数有两个不同的极值点,记作,且,证明为自然对数的底数).

查看答案和解析>>

同步练习册答案