【题目】下列说法:①对于独立性检验,的值越大,说明两事件相关程度越大,②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和,③某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则高一学生被抽到的概率最大,④通过回归直线= +及回归系数,可以精确反映变量的取值和变化趋势,其中正确的个数是
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知函数,x∈R.
(1)判断函数的奇偶性,并说明理由;
(2)利用函数单调性定义证明:在上是增函数;
(3)若对任意的x∈R,任意的 恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,,直线:(为参数,).
(Ⅰ)求直线的普通方程;
(Ⅱ)在曲线上求一点,使它到直线的距离最短,并求出点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,T是由A的子集组成的集合,满足性质:空集和属于,且任意两个元素的交和并也属于T,
(1)当T的元素个数为2时,请写出所有符合条件的T.
(2)当T的元素个数为3时,请写出所有符合条件的T.
(3)求所有符合条件的T的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若在定义域内存在实数,使得成立,则称函数有“和一点”.
(1)函数是否有“和一点”?请说明理由;
(2)若函数有“和一点”,求实数的取值范围;
(3)求证:有“和一点”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知 ,,且函数的图像上的任意两条对称轴之间的距离的最小值是.
(1)求的值:
(2)将函数的图像向右平移单位后,得到函数的图像,求函数在上的最值,并求取得最值时的的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,A,B,C为函数的图象上的三点,它们的横坐标分别是t、t+2、t+4,其中t≥1,
.
(1)设△ABC的面积为S,求S=f(t);
(2)判断函数S=f(t)的单调性;
(3)求S=f(t)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.已知曲线: (为参数), :(为参数).
(1)化,的方程为普通方程,并说明它们分别表示什么曲线;
(2)直线的极坐标方程为,若上的点对应的参数为,为上的动点,求线段的中点到直线距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com