精英家教网 > 高中数学 > 题目详情

【题目】如图,“大衍数列”:来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的( )

A. 64 B. 68 C. 100 D. 140

【答案】B

【解析】分析:由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

详解:模拟程序的运行,可得n=1,S=0,m=7;a=0,S=0;n=2, a=2,S=2; n=3,a=4,s=6;n=4,a=8,s=14;n=5,a=12,s=26;n=6,a=8,s=44;n=7,a=24,s=68,所以输出的是68.

故答案为:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】关于的方程有一个实数解,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,其中为自然对数的底数.

(1)求函数的单调区间和极值;

(2)是否存在,对任意的,任意的,都有?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上, 垂直与圆所在平面, 的垂心.

(1)求证:平面平面

(2)若,点在线段上,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足,当时,,函数.若对任意,存在,不等式成立,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.

(1)求椭圆的方程;

(2)椭圆,设过点斜率存在且不为0的直线交椭圆两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.为普及相关知识,争创全国文明城市,某市组织了文明城市知识竞赛,现随机抽取了甲、乙两个单位各5名职工的成绩(单位:分)如下表:

(1)根据上表中的数据,分别求出甲、乙两个单位5名职工的成绩的平均数和方差,并比较哪个单位的职工对文明城市知识掌握得更好;

(2)用简单随机抽样法从乙单位5名职工中抽取2人,求抽取的2名职工的成绩差的绝对值不小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

)求一投保人在一年度内出险的概率

)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

查看答案和解析>>

同步练习册答案