精英家教网 > 高中数学 > 题目详情

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)若采用样本估计总体的方式,试估计小王的所有微信好友中每日走路步数超过5000步的概率;

(2)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

【答案】(1) ;(2)没有95%以上的把握认为二者有关.

【解析】试题分析:(1人中该日走路步数超过步的有根据古典概型概率公式即可得出结果;(2)根据所给数据,得出列联表,利用公式计算与临界值比较即可得出结论.

试题解析:(1)由题知,40人中该日走路步数超过5000步的有34人,频率为,所以估计他的所有微信好友中每日走路步数超过5000步的概率为

(2)

,故没有95%以上的把握认为二者有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是定义在上的奇函数,且对任意实数,恒有,当时,

(1)求证: 是周期函数;

(2)当时,求的解析式;

(3)计算

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】O为原点的直角坐标系中,点A(4,﹣3)为△OAB的直角顶点,已知AB=2OA,且点B的纵坐标大于0
(1)求 的坐标;
(2)求圆C1:x2﹣6x+y2+2y=0关于直线OB对称的圆C2的方程;在直线OB上是否存在点P,过点P的任意一条直线如果和圆C1圆C2都相交,则该直线被两圆截得的线段长相等,如果存在求出点P的坐标,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>b>1,0<c<1,则( )
A.ac<bc
B.abc<bac
C.ca<cb
D.logac<logbc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an1表示an
(2)求数列{an}的通项公式;
(3)设Tn= + + +…+ ,求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(x﹣m﹣9)<0}
(1)求A∩B;
(2)若AC,求实数 m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,设右焦点为,过原点的直线与椭圆交于两点,线段的中点为,线段的中点为,且.

(1)求弦的长;

(2)当直线的斜率,且直线时, 交椭圆于,若点在第一象限,求证:直线轴围成一个等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校学生社团为了解“大数据时代”下大学生就业情况的满意度,对20名学生进行问卷计分调查(满分100分),得到如图所示的茎叶图:

(1)计算男生打分的平均分,观察茎叶图,评价男女生打分的分散程度;

(2)从打分在80分以上的同学随机抽3人,求被抽到的女生人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求不等式的解集;

(2)若的解集包含,求的取值范围.

查看答案和解析>>

同步练习册答案