精英家教网 > 高中数学 > 题目详情

设{an}是公差d≠0的等差数列,Sn是其前n项的和.

(Ⅰ)若a1=4,且的等比中项是,求数列{an}的通项公式;

(Ⅱ)是否存在p,q∈N*,且p≠q,使得Sp+q是S2p和S2q的等差中项?证明你的结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设{an}是公差d≠0的等差数列,Sn是其前n项的和.
(1)若a1=4,且
S3
3
S4
4
的等比中项是
S5
5
,求数列{an}的通项公式;
(2)是否存在p,q∈N*,且p≠q,使得Sp+q是S2p和S2q的等差中项?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是公差d不为零的正项等差数列,Sn为其前n项的和,满足5S3-6S5=-105,a2,a5,a14成等比数列.
(1)求数列{an}的通项公式;
(2)设c∈N,c≥2,令bn=|
an2c-1
-1|
,Tn为数列{bn}的前n项的和,若T2c≤6,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年西城区一模理)(14分)设{an}是公差d≠0的等差数列,Sn是其前n项的和.

   (1)若a1=4,且,求数列{an}的通项公式;

   (2)是否存在的等差中项?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}是公差d≠0的等差数列,Sn是其前n项的和.
(1)若a1=4,且数学公式,求数列{an}的通项公式;
(2)是否存在p,q∈N*,且p≠q,使得Sp+q是S2p和S2q的等差中项?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设{an}是公差d不为零的正项等差数列,Sn为其前n项的和,满足5S3-6S5=-105,a2,a5,a14成等比数列.
(1)求数列{an}的通项公式;
(2)设c∈N,c≥2,令bn=|
an
2c-1
-1|
,Tn为数列{bn}的前n项的和,若T2c≤6,求c的值.

查看答案和解析>>

同步练习册答案