精英家教网 > 高中数学 > 题目详情
下列几个命题
①若方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0.
②函数是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④函数y=f(x),x∈R的图象与直线x=a可能有两个不同的交点;
⑤一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有   
【答案】分析:①用根的分布来解,令f(x)=x2+(a-3)x+a,一个比0大,一个比0小,只要f(0)<0即可.可知①正确;②求出函数的定义域,根据定义域确定函数的解析式y=0,故②错;③函数f(x)的值域与函数f(x+1)值域相同,故③错;
④函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断;⑤画出函数的图象,根据图象可知⑤正确.
解答:解:①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;正确;
②函数的定义域为{-1,1},∴y=0既是奇函数又是偶函数,故②错;
③函数f(x)的值域与函数f(x+1)值域相同,故③错
④函数表示每个输入值对应唯一输出值的一种对应关系,根据定义进行判定即可判断④错;
⑤根据函数y=|3-x2|的图象可知,⑤正确.
故答案为:①⑤.
点评:此题是个基础题.考查函数图象的对称变化和一元二次方程根的问题,以及函数奇偶性的判定方法等基础知识,考查学生灵活应用知识分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列几个命题:
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
 ②若f(x)的定义域为[0,1],则f(x+2)的定义域为[-2,-1];
③函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到;
④若关于x方程|x2-2x-3|=m有两解,则m=0或m>4.
⑤若函数f(2x+1)是偶函数,则f(2x)的图象关于直线x=
12
对称.
其中正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题:
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②若函数y=
ax+1
的在(-∞,1]有意义,则a=-1;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向左平移2个单位得到.
⑤若关于x方程|x2-2x-3|=m有两解,则m=0或m>4
其中正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

9、下列是关于函数y=f(x),x∈[a,b]的几个命题:
①若x0∈[a,b]且满足f(x0)=0则(x0,0)是f(x)的一个零点;
②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;
③函数f(x)的零点是方程f(x)=0的根,但f(x)=0的根不一定是函数f(x)的零点;
④用二分法求方程的根时,得到的都是近似值.那么以上叙述中,正确的个数为
0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题:
①关于x的不等式ax<
2x-x2
在(0,1)上恒成立,则a的取值范围为(-∞,1]; 
②函数y=log2(-x+1)+2的图象可由y=log2(-x-1)-2的图象向上平移4个单位,向右平移2个单位得到;
③若关于x方程|x2-2x-3|=m有两解,则m=0或m>4;
④若函数f(2x+1)是偶函数,则f(2x)的图象关于直线x=
1
2
对称.
其中正确的有
①②③④
①②③④

查看答案和解析>>

科目:高中数学 来源:0111 月考题 题型:填空题

下列几个命题:
①若方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
②函数是偶函数,但不是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称;
其中正确的有(    )。

查看答案和解析>>

同步练习册答案