分析 利用参数法求出点P的坐标,结合基本不等式进行求解即可.
解答 解:设∠POx=θ,则θ为锐角且P(2$\sqrt{2}$cosθ,2$\sqrt{2}$sinθ),
所以$\frac{8co{s}^{2}θ}{{a}^{2}}$-$\frac{8si{n}^{2}θ}{{a}^{2}-4}$=1,
即有$\frac{4(1+cos2θ)}{{a}^{2}}$-$\frac{4(1-cos2θ)}{{a}^{2}-4}$=1,
化简得,cos2θ=$\frac{1}{8}$[(a2-2)+$\frac{12}{{a}^{2}-2}$]≥$\frac{1}{8}$•2$\sqrt{({a}^{2}-2)•\frac{12}{{a}^{2}-2}}$=$\frac{\sqrt{3}}{2}$,
当且仅当a2-2=$\frac{12}{{a}^{2}-2}$,
即a2=2($\sqrt{3}$+1)时取等号,
所以2θ≤$\frac{π}{6}$,
即有0<θ≤$\frac{π}{12}$.
故答案为:(0,$\frac{π}{12}$].
点评 本题主要考查双曲线性质的应用,利用参数法结合基本不等式求最值是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | ?x∈R,sinx+cosx>$\sqrt{2}$ | B. | 若0<ab<1,则b<$\frac{1}{a}$ | ||
C. | 若x2=|x|,则x=±1 | D. | 若m2+$\sqrt{n}$=0,则m=n=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com