精英家教网 > 高中数学 > 题目详情
已知sinα•cosα=
1
8
,且
π
4
<α<
π
2
,则cosα-sinα=
 
分析:根据α的范围,确定cosα-sinα的符号,然后利用平方,整体代入,开方可得结果.
解答:解:因为
π
4
<α<
π
2
,所以cosα-sinα<0,所以(cosα-sinα)2=1-2sinα•cosα=1-2×
1
8
=
3
4

所以cosα-sinα=-
3
2

故答案为:-
3
2
点评:本题是基础题,考查三角函数的化简求值,注意平方关系的应用,角的范围以及三角函数的符号是解题的关键,考查计算能力,推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinα+cosα=
7
13
(0<α<π),则tanα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα-cosα=
2
,求sin2α的值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα+cosα=
15
且0<α<π,求值:
(1)sin3α-cos3α;  
(2)tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
2
2
(0<θ<π),则cos2θ的值为
-
3
2
-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ+cosθ=
15
,0<θ<π
,求下列各式的值:
(1)sinθ•cosθ
(2)sinθ-cosθ
(3)tanθ

查看答案和解析>>

同步练习册答案