精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上是单调增函数,则实数的取值范围为(  )

A. B. C. D.

【答案】B

【解析】 上恒成立,设,则,再令,则上恒成立,∴上为增函数,

上恒成立,∴上减函数,∴,实数的取值范围为故选B.

【方法点晴】本题主要考查“分离参数”在解题中的应用、利用导数研究函数的单调性以及利用单调性求参数的范围,属于中档题. 利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式恒成立问题求参数范围,本题是利用方法 ② 求解的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD-A1B1C1D1中,E、F分别是ABAA1的中点.

求证:(1)E、C、D1、F四点共面;

(2)CE、D1F、DA三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn,且3anSn4(nN*).

(1)证明:{an}是等比数列;

(2)anan1之间插入n个数,使这n2个数成等差数列.记插入的n个数的和为Tn,求Tn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线M的参数方程为 (θ为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=t(其中t为常数).

(Ⅰ)若曲线N与曲线M只有一个公共点,求t的值;

(Ⅱ)当t=-1时,求曲线M上的点与曲线N上的点的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|3x-1|-2|x|+2.

(Ⅰ)解不等式:f(x)<10;

(Ⅱ)若对任意的实数x,f(x)-|x|≤a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别是a,b,c,且2acosA=bcosC+ccosB.

(Ⅰ)求A的大小;

(Ⅱ)若a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数f(x)的最小值;

(2)已知m∈R,p:关于x的不等式f(x)≥m2+2m-2对任意x∈R恒成立,q:函数y=(m2-1)x是增函数,若p正确,q错误,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(导学号:05856266)[选修4-5:不等式选讲]

设函数f(x)=|2x-1|-|x+2|.

(Ⅰ)解不等式f(x)>0;

(Ⅱ)若x0∈R,使得f+2m2<4m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是矩形平面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案