精英家教网 > 高中数学 > 题目详情
17.下列各函数中,最小值为2的是(  )
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=x+\frac{1}{4(x-2)}-1(x>2)$

分析 查看利用基本不等式求解表达式的最值的条件是否满足即可得到选项.

解答 解:A选项的函数x可以是负数,A不正确;
B选项的函数sinx≠1,函数没有最小值,B不正确;
C选项的函数x2≠-1,C不正确;
D选项的函数$y=x+\frac{1}{4(x-2)}-1$=$y=x-2+\frac{1}{4(x-2)}+1$≥2,当且仅当x=$\frac{5}{2}$取等号.所以D正确.
故选:D.

点评 本题考查基本不等式在最值中的应用,基本不等式成立的条件是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.Rt△ABC中.|AB|=2a(a>0),求直角顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等边三角形ABC的边长为2,点D,E分别为AB,BC的中点,且AE∩CD=F,点H为边AC上的一点,且$\overrightarrow{AH}$=$λ\overrightarrow{AC}$(0<λ<1),当$\overrightarrow{HF}$•$\overrightarrow{HD}$=1时,实数λ=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点M的坐标是(1,1),F1是椭圆$\frac{x^2}{9}+\frac{y^2}{5}$=1的左焦点,P是椭圆上的动点,则|PF1|+|PM|的取值范围是[6-$\sqrt{2}$,6+$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在侧棱长为a的正三棱锥S-ABC中,∠BSA=$\frac{π}{2}$,P为△ABC内一动点,且P到三个侧面SAB,SBC,SCA的距离为d1,d2,d3.若d1+d2=d3,则点P形成曲线的长度为$\frac{\sqrt{2}}{2}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P($\frac{4}{3}$,$\frac{1}{3}$),椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数y=f(x)是定义在R上的偶函数,在(-∞,0]上单调递减,且有f(2)=0,则使得(x-1)•f(log3x)<0的x的范围为(  )
A.(1,2)B.$(0,\frac{1}{9})∪(9,+∞)$C.$(0,\frac{1}{9})∪(1,9)$D.$(\frac{1}{9},9)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z满足$z=\frac{2+i}{i}+i$,则|z|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设P:c2-c-2<0;q:函数y=x2-2cx+1在[$\frac{1}{2}$,+∞)上为增函数,若“p∧q”为假,“p∨q”为真,求实数c的取值范围.

查看答案和解析>>

同步练习册答案