精英家教网 > 高中数学 > 题目详情

【题目】直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:,倾斜角为锐角的直线l过点与单位圆相切.

1)求曲线C的直角坐标方程和直线l的参数方程;

2)设直线l与曲线C交于AB两点,求的值.

【答案】(1);(2.

【解析】

(1)已知条件化简,利用极坐标和直角坐标的互化公式即可得出结果,由倾斜角为锐角的直线l过点与单位圆相切,可得l的倾斜角为,根据直线参数方程的定义即可得出结果.

(2)将直线参数方程和曲线的普通方程联立,利用直线方程中参数的几何意义,可知,借助韦达定理即可得出结果.

1

即曲线C的直角坐标方程为.

又依题意易得直线l的倾斜角为,所以直线l的参数方程为:

2)将代入中,整理得

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的图象在为自然对数的底数)处的切线方程;

2)若对任意的,均有,则称在区间上的下界函数,在区间上的上界函数.

①若,求证:上的上界函数;

②若上的下界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线E)与圆O相交于AB两点,且.过劣弧上的动点作圆O的切线交抛物线ECD两点,分别以CD为切点作抛物线E的切线,相交于点M.

1)求抛物线E的方程;

2)求点M到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点P内一点(不含边界),则不可能为(

A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数). 为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,若直线与曲线交于两点.

1)若,求

2)若点是曲线上不同于的动点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为:,倾斜角为锐角的直线l过点与单位圆相切.

1)求曲线C的直角坐标方程和直线l的参数方程;

2)设直线l与曲线C交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的方程为.在以原点O为极点,x轴正半轴为极轴的极坐标系中,P的极坐标为,直线l过点P.

1)若直线lOP垂直,求直线l的直角标方程:

2)若直线l与曲线C交于AB两点,且,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项的和为,记

1)若是首项为,公差为的等差数列,其中均为正数.

①当成等差数列时,求的值;

②求证:存在唯一的正整数,使得

2)设数列是公比为的等比数列,若存在)使得,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的所有顶点都在球的球面上,该四棱锥的五个面所在的平面截球面所得的圆大小相同,若正四棱锥的高为2,则球的表面积为(

A.B.C.D.

查看答案和解析>>

同步练习册答案