精英家教网 > 高中数学 > 题目详情

【题目】为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图.

(1)根据频率分布直方图,估计该市此次检测理科数学的平均成绩;(精确到个位)

(2)研究发现,本次检测的理科数学成绩近似服从正态分布约为),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占.

(ⅰ)估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位)

(ⅱ)从该市高三理科学生中随机抽取人,记理科数学成绩能达到自主招生分数要求的人数为,求的分布列及数学期望.(说明:表示的概率.参考数据:

【答案】(1);(2)(i);(ii) .

【解析】

(1)直方图中,每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到该市此次检测理科数学的平均成绩;(2)(ⅰ)计算的值;(ⅱ)根据二项分布的概率公式得出的分布列,利用二项分布的期望公式可得数学期望.

(1)该市此次检测理科数学成绩平均成绩约为:

(2)(ⅰ)记本次考试成绩达到自主招生分数要求的理科数学成绩约为

根据题意,,即.

得,

所以,本次考试成绩达到自主招生分数要求的理科数学成绩约为分.

(ⅱ)因为.

所以的分布列为

Y

P

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,函数在点处与轴相切

(1)求的值,并求的单调区间;

(2)当时,,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1..

1)若为常数列,求的值:

2)若为公比为2的等比数列,求的解析式:

3)是否存在等差数列,使得对一切都成立?若存在,求出数列的通项公式:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的标准方程为:该椭圆经过点P(1,),且离心率为

Ⅰ)求椭圆的标准方程;

Ⅱ)过椭圆长轴上一点S(1,0)作两条互相垂直的弦AB、CD.若弦AB、CD的中点分别为M、N,证明:直线MN恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级有学生480名,对他们进行政治面貌和性别的调查,其结果如下:

性别

团员

群众

80

180

1)若随机抽取一人,是团员的概率为,求

2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名团员中任选2人,求两人中至多有1个女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的最小值为1,

(1)求的解析式;

(2)若在区间上不单调,求实数m的取值范围;

(3)求函数在区间上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺公司要对某种工艺品深加工,已知每个工艺品进价为20元,每个的加工费为n元,销售单价为x.根据市场调查,须有,同时日销售量m(单位:个)与成正比.当每个工艺品的销售单价为29元时,日销售量为1000.

1)写出日销售利润y(单位:元)与x的函数关系式;

2)当每个工艺品的加工费用为5元时,要使该公司的日销售利润为100万元,试确定销售单价x的值.(提示:函数的图象在上有且只有一个公共点)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线

椭圆的一个交点为,点

的焦点,且.

(1)的方程;

(2)为坐标原点,在第一象限内,椭圆上是否存在点,使过的垂线交抛物线,直线轴于,且?若存在,求出点的坐标和的面积;若不存在,说明理由.

查看答案和解析>>

同步练习册答案