精英家教网 > 高中数学 > 题目详情

【题目】已知点是椭圆的左、右顶点, 为左焦点,点是椭圆上异于的任意一点,直线与过点且垂直于轴的直线交于点,直线于点.

(1)求证:直线与直线的斜率之积为定值;

(2)若直线过焦点 ,求实数的值.

【答案】(1)见解析;(2).

【解析】试题分析:(1)设,利用点在椭圆上的条件,化简,得到定值;(2)设直线的斜率分别是 ,并且表示直线,以及求出交点的坐标,根据,表示直线的斜率,根据三点共线,表示,得到的齐次方程,求的值,并且代入求的值.

试题解析:(1)证明:设,由已知

.①

∵点在椭圆上,∴.②

由①②得(定值).

∴直线与直线的斜率之积为定值.

(2)设直线斜率分别为,由已知

直线的方程为

直线,则.

,∴.

由(1)知,故

三点共线,得

,得.

,∴

,解得(舍去).

.

由已知,得

代入,得,故.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为 是椭圆上一点,若 .

(1)求椭圆的方程;

(2)直线过右焦点(不与轴重合)且与椭圆相交于不同的两点,在轴上是否存在一个定点,使得的值为定值?若存在,写出点的坐标(不必求出定值);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)为定义R在的偶函数,当0≤x≤2时,y= ;当x>2时,y=f(x)的图象是顶点在p(3,4),且过点A(2,3)的抛物线的一部分.
(1)求函数f(x)的解析式;
(2)在下面的直角坐标系中直接画出函数f(x)的图象,写出函数f(x)的单调区间(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】统计全国高三学生的视力情况,得到如图所示的频率分布直方图,由于不慎将部分数据丢失,但知道前4组的频率成等比数列,后6组的频率成等差数列.

(Ⅰ)求出视力在[4.7,4.8]的频率;

(Ⅱ)现从全国的高三学生中随机地抽取4人,用表示视力在[4.3,4.7]的学生人数,写出的分布列,并求出的期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为对数函数,并且它的图象经过点(2 ),g(x)=[f(x)]2﹣2bf(x)+3,其中b∈R.
(1)求函数f(x)的解析式;
(2)求函数y=g(x)在区间[ ,16]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣3x2+a(6﹣a)x+c.
(1)当c=19时,解关于a的不等式f(1)>0;
(2)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x )(a>0,x>1).
(1)证明函数f(x)为偶函数;
(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.

(Ⅰ)求图中的值;

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案