精英家教网 > 高中数学 > 题目详情

【题目】已知点,在圆上任取一点的垂直平分线交于点.(如图).

(1)求点的轨迹方程

(2)若过点的动直线与(1)中的轨迹相交于两点.问:平面内是否存在异于点的定点,使得恒成立?试证明你的结论.

【答案】(1)

(2)存在,证明见解析

【解析】

1)利用垂直平分线的性质可得,从而得到点的轨迹是以为焦点的椭圆;

2)先考虑当直线轴和直线轴的情况得到定点;再考虑对直线的一般情况都有点满足题意.

(1)依题意得,

故点的轨迹是以为焦点的椭圆,

因此,所求的轨迹是椭圆.

(2)当直线轴时,由知点轴上,可设.

当直线轴时,,由

,或.

因此,若存在异于点的定点满足题意,则点的坐标为.

下面我们来证明:对任意直线均有.

当直线的斜率不存在时,由上可知,结论成立.

当直线的斜率存在时,可设直线.

代入

由于点在椭圆的内部,故判别式.所以

易知点关于轴的对称点为

所以

三点共线,

综上知,存在异于点的定点满足题意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)若曲线与直线交于两点,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电力公司在工程招标中是根据技术、商务、报价三项评分标准进行综合评分的,按照综合得分的高低进行综合排序,综合排序高者中标.

分值权重表如下:

总分

技术

商务

报价

100%

50%

10%

40%

技术标、商务标基本都是由公司的技术、资质、资信等实力来决定的.报价表则相对灵活,报价标的评分方法是:基准价的基准分是68分,若报价每高于基准价1%,则在基准分的基础上扣0.8分,最低得分48分;若报价每低于基准价1%,则在基准分的基础上加0.8分,最高得分为80分.若报价低于基准价15%以上(不含15%)每再低1%,在80分在基础上扣0.8分.

在某次招标中,若基准价为1000(万元).甲、乙两公司综合得分如下表:

公司

技术

商务

报价

80分

90分

A甲分

70分

100分

A乙分

甲公司报价为1100(万元),乙公司的报价为800(万元)则甲,乙公司的综合得分,分别是(  )

A. 73,75.4B. 73,80C. 74.6,76D. 74.6,75.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB分别是双曲线的左右顶点,设过的直线PAPB与双曲线分别交于点MN,直线MNx轴于点Q,过Q的直线交双曲线的于ST两点,且,则的面积( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等腰直角三角形中,,点在边上,垂直,如图①.将沿折起,使到达的位置,且使平面平面,连接,如图②.

(Ⅰ)若的中点,,求证:

(Ⅱ)若,当三棱锥的体积最大时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过A53),B44)两点,且圆心在x轴上.

1)求圆C的标准方程;

2)若直线l过点(52),且被圆C所截得的弦长为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的非负半轴重合,且长度单位相同,直线的极坐标方程为,曲线(为参数).其中.

(1)试写出直线的直角坐标方程及曲线的普通方程;

(2)若点为曲线上的动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是由菱形,平行四边形和矩形组成的一个平面图形,其中,将其沿折起使得重合,如图2

1)证明:图2中的平面平面

2)求图2中点到平面的距离;

3)求图2中二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】河北省高考改革后高中学生实施选课走班制,若某校学生选择物理学科的人数为800人,高二期中测试后,由学生的物理成绩,调研选课走班制学生的学习情况及效果,为此决定从这800人中抽取人,其频率分布情况如下:

分数

频数

频率

8

0.08

18

0.18

20

0.2

0.24

15

10

0.10

5

0.05

合计

1

(1)计算表格中,,的值;

(2)为了了解成绩在,分数段学生的情况,先决定利用分层抽样的方法从这两个分数段中抽取6人,再从这6人中随机抽取2人进行面谈,求2人来自不同分数段的概率.

查看答案和解析>>

同步练习册答案