精英家教网 > 高中数学 > 题目详情

【题目】若函数时,函数值y的取值区间恰为[],就称区间的一个倒域区间.定义在上的奇函数,当时,

)求的解析式;

)求函数内的倒域区间

)若函数在定义域内所有倒域区间上的图像作为函数=的图像,是否存在实数,使集合恰含有2个元素.

【答案】

【解析】

试题(1)运用奇偶性得出;(2)得出方程组问题

3,利用方程思想求解m应当使方程,在内恰有一个实数根,并且使方程,在内恰有一个实数

试题解析:()当时,

)设1≤≤2上递减,

整理得

,解得

内的倒域区间

时,函数值y的取值区间恰为,其中

同号.只考虑0≤2或-2≤0

0≤2时,根据的图像知,最大值为1

∴1≤≤2,由()知内的倒域区间

当-2≤0时间,最小值为-1

,同理知内的倒域区间

依题意:抛物线与函数的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,应当使方程,在内恰有一个实数根,并且使方程,在内恰有一个实数

由方程内恰有一根知

由方程内恰有一根知

综上:=-2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校自主招生一次面试成绩的茎叶图和频率分布直方图均收到了不同程度的损坏,其可见部分信息如下,据此解答下列问题:

1)求参加此次高校自主招生面试的总人数、面试成绩的中位数及分数在内的人数;

2)若从面试成绩在内的学生中任选三人进行随机复查,求恰好有二人分数在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5/千克时,每日可售出该商品11千克.

(1) 的值;

(2) 若商品的成品为3/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足以下三个条件:①对于任意的,都有;②对于任意的都有③函数的图象关于y轴对称,则下列结论中正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过的有40人,不超过的有15人;在45名女性驾驶员中,平均车速超过的有20人,不超过的有25人.

(1)完成下面的列联表,并判断是否有%的把握认为平均车速超过的人与性别有关.

平均车速超过人数

平均车速不超过人数

合计

男性驾驶员人数

女性驾驶员人数

合计

(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.

参考公式与数据:

,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1y=cos xC2y=sin (2x+),则下面结论正确的是( )

A. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

B. C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

C. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2

D. C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心C在直线.

1)求C圆的方程;

2)直线l过圆C外一点,且直线l与圆C只有一个公共点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

【答案】(1);(2)

【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线的直角坐标方程为

,消去参数可知曲线是圆心为,半径为的圆,由直线与曲线相切,可得: ;则曲线C的方程为, 再次利用极坐标与直角坐标的互化公式可得

可得曲线C的极坐标方程.

(2)由(1)不妨设M(),,(),

由此可求面积的最大值.

试题解析:(1)由题意可知直线的直角坐标方程为

曲线是圆心为,半径为的圆,直线与曲线相切,可得: ;可知曲线C的方程为

所以曲线C的极坐标方程为

.

(2)由(1)不妨设M(),,(),

时,

所以△MON面积的最大值为.

型】解答
束】
23

【题目】已知函数的定义域为

(1)求实数的取值范围;

(2)设实数的最大值,若实数 满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆上顶点为A,右焦点为F,直线与圆相切,其中.

1)求椭圆的方程;

2)不过点A的动直线l与椭圆C相交于PQ两点,且,证明:动直线l过定点,并且求出该定点坐标.

查看答案和解析>>

同步练习册答案