精英家教网 > 高中数学 > 题目详情

【题目】已知p:方程x2+mx+1=0有两个不等的负实根,q:方程4x2+4(m﹣2)x+1=0无实根.若“p或q”为真,“p且q”为假.求实数m的取值范围.

【答案】解:由题意p,q中有且仅有一为真,一为假,
若p为真,则其等价于 ,解可得,m>2;
若q为真,则其等价于△<0,即可得1<m<3,
若p假q真,则 ,解可得1<m≤2;
若p真q假,则 ,解可得m≥3;
综上所述:m∈(1,2]∪[3,+∞).
【解析】根据题意,首先求得p、q为真时m的取值范围,再由题意p,q中有且仅有一为真,一为假,分p假q真与p真q假两种情况分别讨论,最后综合可得答案.
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种平面分形如图所示,一级分形图是由一点出发的三条线段,长度均为1,两两 夹角为120°; 二级分形图是在一级分形图的每条线段的末端出发再生成两条长度为原来 的线段,且这两条线段与原线段两两夹角为120°;…;依此规律得到n级分形图,则n级分形图中所有线段的长度之和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,点M是左侧面ADD1A1上的一个动点,满足 =1,则 的夹角的最大值为(

A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某儿童公园设计一个直角三角形游乐滑梯,AO为滑道,∠OBA为直角,OB=20米,设∠AOB=θrad,一个小朋友从点A沿滑道往下滑,记小朋友下滑的时间为t秒,已知小朋友下滑的长度s与t2和sinθ的积成正比,当 时,小朋友下滑2秒时的长度恰好为10米.
(1)求s关于时间t的函数的表达式;
(2)请确定θ的值,使小朋友从点A滑到O所需的时间最短.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=3sin(2x﹣ )的图象向左平移 个单位后,所在图象对应的函数解析式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x
(1)解方程f(log4x)=3;
(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,求实数a的取值范围;
(3)存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,则三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为(
A.1
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知P是抛物线y2=4x上的一个动点,则点P到直线l1:3x﹣4y+12=0和l2:x+2=0的距离之和的最小值是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,则下列叙述正确的是( )

A.AC⊥平面ABB1A1
B.CC1与B1E是异面直线
C.A1C1∥B1E
D.AE⊥BB1

查看答案和解析>>

同步练习册答案