分析 (1)由偶函数的定义f(-x)=f(x)恒成立可求;
(2)不等式m-1≤f(x)≤2m+log217在x∈[-1,$\frac{1}{2}$]上恒成立,求出函数f(x)最值即可.
解答 解:(Ⅰ)∵f(x)=log2(16x+k)-2x=log2(4x+$\frac{k}{{4}^{x}}$),
∴f(-x)=log2(4-x+$\frac{k}{{4}^{-x}}$)=log2(k4x+4-x),
由f(-x)=f(x)恒成立,得k=1
(Ⅱ)∵log2(4x+4-x),令t=4x,由x∈[-1,$\frac{1}{2}$],
∴t∈[$\frac{1}{4}$,2],
∵函数y=t+$\frac{1}{t}$在[$\frac{1}{4}$,1]上单调递增,在[1,2]上单调递减,
∴当t=1时,即x=0时,函数f(x)有最小值f(0)=1,
∴当t=$\frac{1}{4}$时,即x=-1时,函数f(x)有最大值f(-1)=log2$\frac{17}{4}$,
∵m-1≤f(x)≤2m+log217在x∈[-1,$\frac{1}{2}$]上恒成立,
∴m-1≤1且log2$\frac{17}{4}$≤2m+log217.
解得-1≤m≤2
故m的取值范围为[-1,2]
点评 本题考查函数奇偶性的性质、函数恒成立问题,考查转化思想,恒成立问题常转化为函数最值解决.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 向左平移$\frac{π}{18}$个长度单位 | B. | 向右左平移$\frac{π}{18}$个长度单位 | ||
C. | 向左平移$\frac{π}{9}$个长度单位 | D. | 向右左平移$\frac{π}{9}$个长度单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 既有最大值又有最小值 | B. | 有最大值没有最小值 | ||
C. | 有最小值没有最大值 | D. | 既没有最大值也没有最小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4 | B. | 2$\sqrt{2}$ | C. | 8 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com