精英家教网 > 高中数学 > 题目详情
12.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,m),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则m的值为(  )
A.-2B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 利用向量垂直的性质求解.

解答 解:∵向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,m),$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=-1+2m=0,
解得m=$\frac{1}{2}$.
故选:C.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,∠ABC=∠CAD=90°,点E在棱PB上,且PE=2EB,PA=AB=BC.
(1)求证:PD∥平面AEC;
(2)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有(  )
A.30辆B.300辆C.170辆D.1700辆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在区间[0,2π]上随机地取一个数x,则事件“2sinx<1”发生的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆C:(x-2)2+y2=4,线段EF在直线l:y=x+1上运动,点P为线段EF上任意一点,若圆C上存在两点A,B,使得$\overrightarrow{PA}$•$\overrightarrow{PB}$≤0,则线段EF长度的最大值是$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知复数z=i(2+i),则|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F是抛物线y2=8x的焦点,A,B是该抛物线上两个不同的点,|AF|+|BF|=12,则线段AB中点M的横坐标为(  )
A.16B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知四面体ABCD的顶点A,B,C,D在空间直角坐标系中的坐标分别为$(1,0,0),(0,1,0),(0,0,1),(-\frac{1}{3},-\frac{1}{3},-\frac{1}{3})$,O为坐标原点,则在下列命题中,正确的为(  )
A.OD⊥平面ABCB.直线OB∥平面ACD
C.直线AD与OB所成的角是45°D.二面角D-OB-A为45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.“女大学生就业难”究竟有多难?其难在何处?女生在求职中是否收到了不公平对待?通过对某大学应届毕业生的调查与实证分析试对下列问题提出解答.为调查某地区大学应届毕业生的调查,用简单随机抽样方法从该地区抽取了500为大学生做问卷调查,结果如下:
性别
是否公平
公平4030
不公平160270
(1)估计该地区大学生中,求职中收到了公平对待的学生的概率;
(2)能否有99%的把握认为该地区的大学生求职中受到了不公平对待与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的大学生中,求职中是否受到了不公平对待学生的比例?说明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0000.0100.001
k3.8416.63510.828

查看答案和解析>>

同步练习册答案