9£®ÏÂÃæÓÐËĸöÃüÌ⣺
¢Ùº¯Êýy=sin2xµÄ×îСÖÜÆÚÊǦУ»
¢Ú°Ñº¯Êý$y=3sin£¨{\frac{¦Ð}{3}-x}£©$µÄµ¥µ÷Çø¼äÊÇ$[{-2k¦Ð-\frac{¦Ð}{6}£¬-2k¦Ð+\frac{5¦Ð}{6}}]$£¬k¡ÊZ£»
¢Ûº¯Êý$y=tan£¨{x+\frac{¦Ð}{3}}£©$µÄ¶¨ÒåÓòÊÇ$\left\{{x\left|{x¡ÊRÇÒx¡Ù2k¦Ð+\frac{¦Ð}{6}£¬k¡ÊZ}\right.}\right\}$£»
¢Üº¯Êýy=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐÄ×ø±êÊÇ£¨k¦Ð£¬0£©£¬k¡ÊZ£®
ÆäÖУ¬ÕýÈ·µÄÊÇ¢Ù£®£¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

·ÖÎö ¶Ô4¸öÑ¡Ïî·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º¢Ùº¯Êýy=sin2xµÄ×îСÖÜÆÚÊÇ$\frac{2¦Ð}{2}$=¦Ð£¬ÕýÈ·£»
¢ÚÓÉ-$\frac{¦Ð}{2}$+2k¦Ð¡Üx-$\frac{¦Ð}{3}$¡Ü$\frac{¦Ð}{2}$¦Ð+2k¦Ð£¬¿ÉµÃ-$\frac{¦Ð}{6}$+2k¦Ð¡Üx¡Ü$\frac{5¦Ð}{6}$¦Ð+2k¦Ð£¬¿ÉµÃ°Ñº¯Êý$y=3sin£¨{\frac{¦Ð}{3}-x}£©$µÄµ¥µ÷¼õÇø¼äÊÇ[-$\frac{¦Ð}{6}$+2k¦Ð£¬$\frac{5¦Ð}{6}$¦Ð+2k¦Ð]£¬k¡ÊZ£¬²»ÕýÈ·£»
¢ÛÓÉx+$\frac{¦Ð}{3}$¡Ù$\frac{¦Ð}{2}$+k¦Ð£¬¿ÉµÃº¯Êý$y=tan£¨{x+\frac{¦Ð}{3}}£©$µÄ¶¨ÒåÓòÊÇ$\left\{{x\left|{x¡ÊRÇÒx¡Ù2k¦Ð+\frac{¦Ð}{6}£¬k¡ÊZ}\right.}\right\}$£¬²»ÕýÈ·£»
¢Üº¯Êýy=tanxµÄͼÏóµÄ¶Ô³ÆÖÐÐÄ×ø±êÊÇ£¨$\frac{1}{2}$k¦Ð£¬0£©£¬k¡ÊZ£¬²»ÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù£®

µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÖªÊ¶×ÛºÏÐÔÇ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÏÂÁÐÐðÊö´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®ÈôʼþA·¢ÉúµÄ¸ÅÂÊΪP£¨A£©£¬Ôò0¡ÜP£¨A£©¡Ü1
B£®ÏµÍ³³éÑùÊDz»·Å»Ø³éÑù£¬Ã¿¸ö¸öÌå±»³éµ½µÄ¿ÉÄÜÐÔÏàµÈ
C£®ÏßÐԻعéÖ±Ïß$\hat y=\hat bx+\hat a$±Ø¹ýµã$£¨\overline x£¬\overline y£©$
D£®¶ÔÓÚÈÎÒâÁ½¸öʼþAºÍB£¬¶¼ÓÐP£¨A¡ÈB£©=P£¨A£©+P£¨B£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÈôA={2£¬3£¬4}£¬B={x|x£¼4}£¬Ôò¼¯ºÏA¡ÉBÖеÄÔªËظöÊýÊÇ£¨¡¡¡¡£©
A£®3B£®2C£®1D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚ$-\frac{¦Ð}{4}¡Üx¡Ü\frac{¦Ð}{4}$£¬Ôòº¯Êýy=tanxµÄÖµÓòΪ[-1£¬1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÕýÈýÀâÖùABC-A1B1C1¸÷Àⳤ¾ùΪ1£¬MΪCC1µÄÖе㣬ÔòµãB1µ½½ØÃæA1BMµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\frac{\sqrt{2}}{2}$C£®$\frac{1}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®£¨1£©¼ÆËãlog25625+lg0.01+ln$\sqrt{e}$-2£»
£¨2£©ÒÑÖªtan£¨¦Ð+¦Á£©=3£¬Çó$\frac{2cos£¨¦Ð-a£©-3sin£¨¦Ð+a£©}{4cos£¨-a£©+sin£¨2¦Ð-a£©}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚÈýÀâ׶AB0CÖУ®AO¡ÍƽÃæBOC£¬¡ÏOAB=¡ÏOAC=$\frac{¦Ð}{6}$£®AB=AC=2£®BC=$\sqrt{2}$£¬D£¬E·Ö±ðΪAB£¬OBµÄÖе㣮
£¨1£©ÇóOµ½Æ½ÃæABCµÄ¾àÀ룻
£¨2£©ÔÚÏ߶ÎCBÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃƽÃæDEF¡ÎƽÃæAOC£¬Èô´æÔÚ£¬ÊÔÈ·¶¨FµÄλÖ㬲¢Ö¤Ã÷´ËµãÂú×ãÒªÇó£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=a-\frac{4}{{{2^x}+1}}£¨{a¡ÊR}£©$ÊǶ¨ÒåÔÚ£¨-¡Þ£¬+¡Þ£©ÉϵÄÆ溯Êý£®
£¨1£©ÇóaµÄÖµ£¬²¢Ð´³öº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÇóÖ¤£ºº¯Êýf£¨x£©ÔÚÉÏÊÇÔöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄÊ×Ïîa1=1£¬snÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÇÒÂú×㣺
anSn+1-an+1Sn+an-an+1=¦Ëanan+1£¨¦Ë¡Ù0£¬n¡ÊN £©
£¨1£©Èôa1£¬a2£¬a3³ÉµÈ±ÈÊýÁУ¬ÇóʵÊý¦ËµÄÖµ£»
£¨2£©Èô¦Ë=$\frac{1}{2}$£¬ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸