精英家教网 > 高中数学 > 题目详情
3.设A=(-6,1],B=(-1,9],则∁R(A∩B)=(-∞,-1]∪(1,+∞).

分析 根据集合的基本运算进行求解即可.

解答 解:∵A=(-6,1],B=(-1,9],
∴A∩B=(-1,1],
则∁R(A∩B)=(-∞,-1]∪(1,+∞),
故答案为:(-∞,-1]∪(1,+∞)

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.下列的四个命题:
①|$\overline{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$||$\overrightarrow{b}$|;
②($\overrightarrow{a}•\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2
③若$\overrightarrow{a}$⊥($\overrightarrow{b}$-$\overrightarrow{c}$),则$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}•\overrightarrow{c}$;
④若$\overrightarrow{a}•\overrightarrow{b}$=0,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|.
其中真命题是(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用函数单调性的定义证明函数f(x)=-x2+1在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|ax2-x+2=0,x∈R}.
(1)若A中有两个元素,求实数a的取值范围;
(2)若A中至多有一个元素,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)对任意的x∈R都满足f(x)+2f(-x)=3x-2,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角α满足(4k+1)π<α<(4k+1)π+$\frac{π}{6}$(k∈z),那么$\frac{α}{2}$是第二象限角,2α是第一象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列函数的值域(其中(1)和(4)请画出函数的图象)
(1)f(x)=$\frac{1}{x+3}$;
(2)f(x)=$\frac{1}{{x}^{2}+3}$+3;
(3)f(x)=2x2-4x+3(-1<x<4);
(4)f(x)=|x+1|+$\sqrt{(x-2)^{2}}$;
(5)f(x)=2x2-4x+3(-1<x<a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数x,y满足x2+y2=9(y≥0).试求m=$\frac{y+3}{x+1}$及b=2x+y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某工厂要制造A型电子装置45台,B型电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2m2,可做A、B两型电子装置外壳3个或5个,乙种每张面积3m2,可做A、B两型电子装置外壳各6个,请用平面区域表示甲、乙两种薄钢板张数的取值范围.

查看答案和解析>>

同步练习册答案