精英家教网 > 高中数学 > 题目详情
设△ABC的三个内角A、B、C对的边分别为a、b、c且a2+b2=mc2(m为常数),若tanC(tanA+tanB)=2tanAtanB,则实数m的值为
2
2
分析:由已知的等式通过切化弦,可得sinAsinBcosC=
1
2
sin2C,然后根据正弦定理化简得出2abcosC=
1
2
c2,再由余弦定理求出cosC代入化简,即可求出m的值.
解答:解:∵tanC(tanA+tanB)=2tanAtanB
tanA•tanB
tanA+tanB
=
1
2
tanC
sinA•sinB
sinAcosB+cosAsinB
=
sinC
2cosC

可以得出sinAsinBcosC=sinC•sin(A+B)=
1
2
sin2C
根据正弦定理上式可化简为:2abcosC=
1
2
c2  ①
根据余弦定理可知cosC=
a2+b2-c2
2ab
   ②
由①②得a2+b2=2c2
∵a2+b2=mc2
∴m=2
故答案为:m=2
点评:本题考查正弦定理,余弦定理的应用,同角三角函数的基本关系,把角的关系转化为边的关系,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的三个内角A,B,C对边分别是a,b,c,已知
a
sinA
=
3
b
cosB

(I)求角B的大小;
(II)若cos(B+C)+
3
sinA=2,且bc=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2cosxsin(x+
π
6
)+2sinxcos(x+
π
6
)

(I)当x∈[0,
π
2
]时,求f(x)
的值域;
(II)设△ABC的三个内角A,B,C所对的三边依次为a,b,c,已知f(A)=1,a=
7
,△ABC面积为
3
3
2
,求b+c

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角分别为A,B,C.向量
m
=(1,cos
C
2
)与
n
=(
3
sin
C
2
+cos
C
2
3
2
)
共线.
(Ⅰ)求角C的大小;
(Ⅱ)设角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的三个内角为A,B,C,则“sinA>sinB”是“cosA<cosB”的(  )

查看答案和解析>>

同步练习册答案