精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,且过点,椭圆的右顶点为,点的坐标为

1)求椭圆的方程;

2)已知纵坐标不同的两点为椭圆上的两个点,且三点共线,线段的中点为,求直线的斜率的取值范围.

【答案】1;(2.

【解析】

1)由题意结合椭圆的性质可得,求得即可得解;

2)由题意设直线方程为,点,直线的斜率为,联立方程结合韦达定理可表示出点的坐标,进而可得,结合基本不等式即可得解.

1)∵椭圆的离心率为,且过点

,解得

∴椭圆的方程为

2)依题意知直线过点,且斜率不为0

故可设其方程为

,消去

设点,直线的斜率为

,∴,∴

又点的坐标为,∴

时,

时,

,当且仅当时,等号成立,

,∴

综上所述,直线的斜率的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为庆祝中华人民共和国成立70周年,2019101日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为(

A.2048B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC在内角ABC的对边分别为abc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科研课题组通过一款手机APP软件,调查了某市1000名跑步爱好者平均每周的跑步量(简称“周跑量”),得到如下的频数分布表

周跑量(km/周)

人数

100

120

130

180

220

150

60

30

10

(1)在答题卡上补全该市1000名跑步爱好者周跑量的频率分布直方图:

注:请先用铅笔画,确定后再用黑色水笔描黑

(2)根据以上图表数据计算得样本的平均数为,试求样本的中位数(保留一位小数),并用平均数、中位数等数字特征估计该市跑步爱好者周跑量的分布特点

(3)根据跑步爱好者的周跑量,将跑步爱好者分成以下三类,不同类别的跑者购买的装备的价格不一样,如下表:

周跑量

小于20公里

20公里到40公里

不小于40公里

类别

休闲跑者

核心跑者

精英跑者

装备价格(单位:元)

2500

4000

4500

根据以上数据,估计该市每位跑步爱好者购买装备,平均需要花费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解疫情期间哈一中高三学生的心理需求,更好的开展高考前的心理健康教育工作,心理老师设计了两个问题,第一个问题是你出生的月份是奇数吗?;第二个问题是你是否需要心理疏导?”.让被调查者在保密的情况下掷一个均匀的骰子,其他人不知道掷骰子的结果,要求:当出现1点或2点时,回答第一个问题;否则回答第二个问题,由于其他人不知道他回答的是哪一个问题,因此,当他回答时,你也无法知道他是否有心理问题,这种调查既保护了他的隐私,也能反映真实情况,可以从调查结果中得到需要的估计,若调查的900名学生中有156人回答,由此可估计我校高三需要心理疏导的学生所占的比例约为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱中,平面.

1)求证:平面

2)若是棱的中点,在棱上是否存在一点,使得//平面?若存在,请确定点的位置:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中,中点,以为折痕把折起,使点到达点的位置(平面.

1)证明:

2)若,求二面角的余弦值.

查看答案和解析>>

同步练习册答案