【题目】已知曲线方程C:.
(1)当时,求圆心和半径;
(2)若曲线C表示的圆与直线l: 相交于M,N,且,求m的值.
【答案】(1)圆心坐标为(1,2),半径为;(2)m=4.
【解析】试题分析: (1)当m=﹣6时,方程C:x2+y2﹣2x﹣4y+m=0,可化为(x﹣1)2+(y﹣2)2=11,即可求得圆心和半径;
(2)利用圆心(1,2)到直线l:x+2y﹣4=0的距离公式可求得圆心到直线距离d,利用圆的半径、弦长之半、d构成的直角三角形即可求得m的值.
试题解析:
(1)当m=﹣6时,方程C:x2+y2﹣2x﹣4y+m=0,可化为(x﹣1)2+(y﹣2)2=11,
圆心坐标为(1,2),半径为;
(2)∵(x﹣1)2+(y﹣2)2=5﹣m,
∴圆心(1,2)到直线l:x+2y﹣4=0的距离d=,
又圆(x﹣1)2+(y﹣2)2=5﹣m的半径r=,,
∴()2+()2=5﹣m,得m=4.
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点,P为圆上一点,线段上一点N满足,直线上一点Q,满足.
(Ⅰ) 求点Q的轨迹C的方程;
(Ⅱ) O为坐标原点, 是以为直径的圆,直线与相切,并与轨迹C交于不同的两点A,B. 当且满足时,求△OAB面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cos A=,B=A+.
(1)求b的值;
(2)求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测.
地区 | |||
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2 .
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com