精英家教网 > 高中数学 > 题目详情

【题目】已知曲线方程C:.

(1)当时,求圆心和半径;

(2)若曲线C表示的圆与直线l: 相交于M,N,且,求m的值.

【答案】(1)圆心坐标为(1,2),半径为;(2)m=4.

【解析】试题分析: (1)当m=﹣6时,方程C:x2+y2﹣2x﹣4y+m=0,可化为(x﹣1)2+(y﹣2)2=11,即可求得圆心和半径;

(2)利用圆心(1,2)到直线l:x+2y﹣4=0的距离公式可求得圆心到直线距离d,利用圆的半径、弦长之半、d构成的直角三角形即可求得m的值.

试题解析:

(1)当m=﹣6时,方程C:x2+y2﹣2x﹣4y+m=0,可化为(x﹣1)2+(y﹣2)2=11,

圆心坐标为(1,2),半径为

(2)∵(x﹣1)2+(y﹣2)2=5﹣m,

圆心(1,2)到直线l:x+2y﹣4=0的距离d=

又圆(x﹣1)2+(y﹣2)2=5﹣m的半径r=

∴(2+(2=5﹣m,得m=4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆,圆心为,定点,P为圆上一点,线段上一点N满足,直线上一点Q,满足.

(Ⅰ) 求点Q的轨迹C的方程;

(Ⅱ) O为坐标原点, 是以为直径的圆,直线相切,并与轨迹C交于不同的两点A,B. 当且满足时,求△OAB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知知矩形中,点是边上的点, 相交于点,且,现将沿折起,如图2,点的位置记为,此时.

(1)求证:

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分ABC中,角A,B,C所对的边分别为a,b,c已知a=3,cos A,B=A+

1b的值;

2ABC的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海关对同时从三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件进行检测.

地区




数量

50

150

100

1)求这6件样品中来自各地区商品的数量;

2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示(单位:cm),则该几何体的表面积是cm2 , 体积是cm3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正方形ABCD,E,F分别是CD,AD的中点,BE,CF交于点P.求证

(1)BECF;

(2)AP=AB.

查看答案和解析>>

同步练习册答案