精英家教网 > 高中数学 > 题目详情
2.已知函数$f(x)=\sqrt{3}sinωx+cosωx(ω>0)$的最小正周期为π.对于函数f(x),下列说法正确的是(  )
A.在$[\frac{π}{6},\frac{2π}{3}]$上是增函数
B.图象关于直线$x=\frac{5π}{12}$对称
C.图象关于点$(-\frac{π}{3},0)$对称
D.把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,所得函数图象关于y轴对称

分析 由条件利用两角和的正弦公式化简函数f(x)的解析式,再利用正弦函数的单调性以及它的图象的对称性,函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:函数$f(x)=\sqrt{3}sinωx+cosωx(ω>0)$=2sin(ωx+$\frac{π}{6}$) 的最小正周期为$\frac{2π}{ω}$=π,
∴ω=2,f(x)=2sin(2x+$\frac{π}{6}$).
由x∈$[\frac{π}{6},\frac{2π}{3}]$,可得2x+$\frac{π}{6}$∈[$\frac{π}{2}$,$\frac{5π}{6}$],故f(x)=2sin(2x+$\frac{π}{6}$) 在$[\frac{π}{6},\frac{2π}{3}]$上是减函数,故排除A.
令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,k∈Z,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,故函数f(x)的图象关于直线x=$\frac{kπ}{2}$+$\frac{π}{6}$对称,故排除B.
令2x+$\frac{π}{6}$=kπ,k∈Z,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,故函数f(x)的图象关于($\frac{kπ}{2}$-$\frac{π}{12}$,0)对称,故排除C.
所得函数图象对应的函数解析式为y=sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=cos2x,它是偶函数,
故它的图象关于y轴对称,
故选:D.

点评 本题主要考查两角和的正弦公式,正弦函数的单调性以及它的图象的对称性,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中,a1=1,an+1=n+an,则$\frac{{a}_{n}}{n}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知y=f(x)是定义域为R的奇函数,且当x>0时,f(x)=3x+x3-5,则函数y=f(x)的零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数$f(x)=\left\{{\begin{array}{l}{x+2}\\{{x^2}}\\{2x}\end{array}}\right.,\begin{array}{l}{(x≤-1)}\\{(-1<x<2)}\\{(x≥2)}\end{array}$,则$f(\frac{1}{f(2)})$=$\frac{1}{16}$,若f(x)=3,则x=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\sqrt{3}sinωx+2{cos^2}\frac{ωx}{2}-1(ω>0)$的最小正周期为π.对于函数f(x),下列说法正确的是(  )
A.在$[\frac{π}{6},\frac{2π}{3}]$上是增函数
B.图象关于直线$x=\frac{5π}{12}$对称
C.图象关于点$(-\frac{π}{3},0)$对称
D.把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,所得函数图象关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x3+x2-2x-8,则当x<0时,函数f(x)的解析式为f(x)=x3-x2-2x+8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设x∈R,则“|x-2|<1”是“x2+x-2>0”的充分不必要条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,P是双曲线上的点,若它的渐近线上存在一点Q(第一象限内),使得$\overrightarrow{FP}$=3$\overrightarrow{PQ}$,则双曲线离心率的取值范围为(1,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列说法中正确的个数为2.
①命题:“若a<0,则a2≥0”的否命题是“若a≥0,则a2<0”;
②若复合命题“p∧q”为假命题,则p,q均为假命题;
③“三个数a,b,c成等比数列”是“$b=\sqrt{ac}$”的充分不必要条件;
④命题“若x=y,则sinx=siny”的逆否命题为真命题.

查看答案和解析>>

同步练习册答案