精英家教网 > 高中数学 > 题目详情
16.求下列函数的导数:
(1)y=x(1+$\frac{2}{x}$+$\frac{2}{{x}^{2}}$)
(2)y=x4-3x2-5x+6.

分析 根据导数的运算法则计算即可.

解答 解:(1)y=x(1+$\frac{2}{x}$+$\frac{2}{{x}^{2}}$)=x+2+$\frac{2}{x}$,∴y′=1-$\frac{2}{{x}^{2}}$,
(2)y′=4x3-6x-5.

点评 本题考查了导数的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=2{sin^2}(\frac{π}{4}+x)+\sqrt{3}$cos2x.
(1)求函数f(x)的最小正周期和对称轴方程;
(2)若关于x的方程f(x)-m=2在$x∈[0,\frac{π}{2}]$上有两个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex+ax-1(a为常数,a∈R).
(1)求函数f(x)的单调区间;
(2)若对所有x≥0都有f(x)≥f(-x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知随机变量ξ服从正态分布,其概率分布密度函数$f(x)=\frac{1}{{\sqrt{2π}}}{e^{-\frac{{{{({x-1})}^2}}}{2}}}$,则下列结论中错误的是(  )
A.Eξ=1B.p(0<ξ<2)=1-2p(ξ≥2)
C.若η=ξ-1,则η~N(0,1)D.Dξ=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=x2+2x+2a与g(x)=|x-1|+|x+a|有相同的最小值,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=sin(3x+$\frac{π}{6}$) 的最小正周期为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.将向量$\overrightarrow a$=(2,1)绕原点按逆时针方向旋转$\frac{π}{4}$得到向量$\overrightarrow b$,则向量$\overrightarrow b$的坐标是($\frac{\sqrt{2}}{2}$,$\frac{3\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个命题:
①用相关指数R2来刻画回归效果,R2越大,说明模型的拟和效果越好;
②为了解高二学生身体状况,某校将高二每个班学号的个数为1的学生选作代表进行调查体检,这种抽样方法称为系统抽样;
③若f(x)满足f(1+x)=f(1-x),则函数y=f(x)的图象关于直线x=1对称;
④函数y=f(1+x)的图象与y=-f(1-x) 的图象关于y轴对称.
其中真命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在单调递增数列{an}中,a1=2,a2=4,且a2n-1,a2n,a2n+1成等差数列,a2n,a2n+1,a2n+2成等比数列,n=1,2,3,….
(Ⅰ)(ⅰ)求证:数列$\{\sqrt{{a_{2n}}}\}$为等差数列;
(ⅱ)求数列{an}的通项公式.
(Ⅱ)设数列$\{\frac{1}{a_n}\}$的前n项和为Sn,证明:Sn>$\frac{4n}{3(n+3)}$,n∈N*

查看答案和解析>>

同步练习册答案