精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心I,且有
IG
F1F2
(其中λ为实数),椭圆C的离心率e=(  )
分析:在焦点△F1PF2中,设P(x0,y0),由三角形重心坐标公式,可得重心G的纵坐标,因为
IG
F1F2
,故内心I的纵坐标与G相同,最后利用三角形F1PF2的面积等于被内心分割的三个小三角形的面积之和建立a、b、c的等式,即可解得离心率
解答:解:设P(x0,y0),∵G为△F1PF2的重心,
∴G点坐标为 G(
x0
3
y0
3
),
IG
F1F2
,∴IG∥x轴,
∴I的纵坐标为
y0
3

在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c
SF1PF2=
1
2
•|F1F2|•|y0|
又∵I为△F1PF2的内心,∴I的纵坐标
y0
3
即为内切圆半径,
内心I把△F1PF2分为三个底分别为△F1PF2的三边,高为内切圆半径的小三角形
SF1PF2=
1
2
(|PF1|+|F1F2|+|PF2|)|
y0
3
|
1
2
•|F1F2|•|y0|=
1
2
(|PF1|+|F1F2|+|PF2|)|
y0
3
|
1
2
×2c•|y0|=
1
2
(2a+2c)|
y0
3
|,
∴2c=a,
∴椭圆C的离心率e=
c
a
=
1
2

故选A
点评:本题考查了椭圆的标准方程和几何意义,重心坐标公式,三角形内心的意义及其应用,椭圆离心率的求法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案