精英家教网 > 高中数学 > 题目详情

已知映射f:A→B,其中A=B=R,对应法则为f:x→y=x2+2x+3.若实数k∈B,在集合A中不存在原象,则k的取值范围是


  1. A.
    (-∞,0)
  2. B.
    [2,+∞)
  3. C.
    (-∞,2)
  4. D.
    (3,+∞
C
分析:实数m∈B,在集合A中不存在原象,表示m应该在A中所有元素在B中对应象组成的集合的补集中,故我们可以根据已知条件中的A=B=R,对应法则为f:x→y=x2+2x+3,求出A中所有元素在B中对应的象组成的集合,再求其补集即可得到答案.
解答:当x∈A时,在映射f:A→B的作用下
对应象的满足:y=x2+2x+3≥2
故若实数m∈B,在集合A中不存在原象
则m应满足,m<2
即满足条件的实数m的取值范围是(-∞,2)
故选C
点评:在集合A到B的映射中,若存在实数m∈B,在集合A中不存在原象,表示m应该在A中所有元素在B中对应象组成的集合的补集中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知映射f:A→B,其中集合A={-2,-1,1,2,3},集合B中的元素都是A中的元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是:a2-1,则集合B中的元素的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,A=B=R,对应法则f:x→y=-x2+2x,对于实数k∈B在A中没有原象,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,其中A=B=R,对应法则f:x→y=|x|
1
2
,若对实数k∈B,在集合A中不存在元素x使得f:x→k,则k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,集合A中的元素x与集合B中的元素y=2x-3对应,则B中元素9的原象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知映射f:A→B,其中集合A={-3,-2,-1,1,2,3,4,},且对任意a∈A,在B中和它对应的元素是|a|,则集合B中元素的个数最少是
4
4

查看答案和解析>>

同步练习册答案