精英家教网 > 高中数学 > 题目详情

【题目】如图四边形ABCD为菱形GACBD的交点BE⊥平面ABCD

(1)证明平面AEC⊥平面BED.

(2)若∠ABC=120°AEEC三棱锥E-ACD的体积为求该三棱锥的侧面积.

【答案】(1)见解析23+2.

【解析】试题分析:(1)由菱形性质得AC⊥BD.再由线面垂直性质得AC⊥BE,因此AC⊥平面BED.最后根据面面垂直判定定理得结论(2)先确定各面形状,再根据勾股定理求对应量,最后根据面积公式求各面面积,和为侧面积

试题解析:(1)因为四边形ABCD为菱形,所以AC⊥BD.

因为BE⊥平面ABCD,所以AC⊥BE,又BD∩BE=B,故AC⊥平面BED.

又AC平面AEC,所以平面AEC⊥平面BED.

(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=xGB=GD=.

因为AE⊥EC,所以在Rt△AEC中,可得EG=x.

由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=x.

由已知得,三棱锥E-ACD的体积

VE-ACD=×AC·GD·BE=x3=.

故x=2.从而可得AE=EC=ED=.

所以△EAC的面积为3,△EAD的面积与△ECD的面积均为.

故三棱锥E-ACD的侧面积为3+2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于函数若在定义域内存在实数满足,则称为局部奇函数

1)已知二次函数,试判断是否为局部奇函数,并说明理由;

2)是定义在区间上的局部奇函数求实数的取值范围;

3)为定义域为上的局部奇函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,点边的中点,将沿折起,使平面平面,连接 ,得到如图所示的几何体.

(Ⅰ)求证: 平面

(Ⅱ)若 与其在平面内的正投影所成角的正切值为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知中,角的对边分别为

)若,求面积的最大值;

)若,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是长方形,侧棱底面,且,过DF,过FPCE.

)证明:平面PBC

)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校随机调查80名学生,以研究学生爱好羽毛球运动与性别的关系,得到下面的 列联表:

爱好

不爱好

合计

20

30

50

10

20

30

合计

30

50

80

(Ⅰ)将此样本的频率视为总体的概率,随机调查本校的3名学生,设这3人中爱好羽毛球运动的人数为,求的分布列和数学期望;

(Ⅱ)根据表3中数据,能否认为爱好羽毛球运动与性别有关?

0.050

0.010

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员名,其中种子选手名;乙协会的运动员名,其中种子选手名.从这名运动员中随机选择人参加比赛.

(1)设为事件“选出的人中恰有名种子选手,且这名种子选手来自同一个协会”求事件发生的概率;

(2)设为选出的人中种子选手的人数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)loga(1x)g(x)loga(1x)(a>0a1).

(1)a2函数f(x)的定义域为[363]f(x)的最值;

(2)求使f(x)g(x)>0x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系xOyx轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程ykx (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.

设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

同步练习册答案