精英家教网 > 高中数学 > 题目详情
命题“已知a,b为实数,若
a
b
,则a>b”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是(  )
A、0B、1C、2D、4
分析:根据逆否命题的等价性质,只需要判断原命题和逆命题的真假性即可.
解答:解:原命题:若
a
b
,则a>b≥0,∴a>b成立,即原命题为真命题,同时逆否命题也为真命题.
逆命题:“已知a,b为实数,若a>b,则
a
b
”.
当a=2,b=-1时,满足a>b,但
b
无意义,∴逆命题为假命题,同时否命题也为假命题.
故真命题的个数为2个.
故选:C.
点评:本题主要考查命题的真假判断,利用四种命题之间的关系,结合互为逆否命题的两个命题为等价命题只需判断原命题和逆命题即可,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列命题(i为虚数单位)中正确的是
①已知a,b∈R,则a=b是(a-b)+(a+b)i为纯虚数的充要条件;
②当z是非零实数时,|z+
1
z
|≥2恒成立;
③复数z=(1-i)3的实部和虚部都是-2;
④如果|a+2i|<|-2+i|,则实数a的取值范围是-1<a<1;
⑤复数z=1-i,则
1
z
+z=
3
2
+
1
2
i
其中正确的命题的序号是
②③④
②③④
.(注:把你认为正确的命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下列命题:
①已知p、q为两个命题,若“p∨q”为假命题,则“?p∧?q”为真命题;
②已知随机变量X服从正态分布N(3,1),且P(2≤x≤4)=0.6826,则P(x>4)=0.1587;
③“m<
1
4
”是“一元二次方程x2+x+m=0有实根”的必要不充分条件;
④命题“若a>b,则2a>2b-1”的否命题为:若a≤b,则2a≤2b-1.
其中不正确的命题个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:

的充要条件;

② 已知A、B是双曲线实轴的两个端点,MN是双曲线上关于x轴对称的两点,直线AMBN的斜率分别为k1k2,且的最小值为2,则双曲线的离心率e=

③ 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是

④ 一个圆形纸片,圆心为OF为圆内一定点,M是圆周上一动点,把纸片折叠使MF重合,然后抹平纸片,折痕为CD,设CDOM交于P,则P的轨迹是椭圆。

其中真命题的序号是                 。(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省吉林市高三(下)期末数学试卷(理科)(解析版) 题型:选择题

已知下列命题:
①已知p、q为两个命题,若“p∨q”为假命题,则“¬p∧¬q”为真命题;
②已知随机变量X服从正态分布N(3,1),且P(2≤x≤4)=0.6826,则P(x>4)=0.1587;
③“”是“一元二次方程x2+x+m=0有实根”的必要不充分条件;
④命题“若a>b,则2a>2b-1”的否命题为:若a≤b,则2a≤2b-1.
其中不正确的命题个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:

的充要条件;

② 已知A、B是双曲线实轴的两个端点,MN是双曲线上关于x轴对称的两点,直线AMBN的斜率分别为k1k2,且的最小值为2,则双曲线的离心率e=

③ 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率是

④ 一个圆形纸片,圆心为OF为圆内一定点,M是圆周上一动点,把纸片折叠使MF重合,然后抹平纸片,折痕为CD,设CDOM交于P,则P的轨迹是椭圆。

其中真命题的序号是                 。(填上所有真命题的序号)

查看答案和解析>>

同步练习册答案