精英家教网 > 高中数学 > 题目详情
3.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点,且SD⊥PC.
(1)求二面角P-AC-D的大小;
(2)在侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE:EC的值;若不存在,试说明理由.

分析 (1)连结BD,交AC于点O,连结SO,OP,设SD的中点为Q,连结BQ,△SBD为等边三角形,推导出∠POD是二面角P-AC-D的平面角,由此能求出二面角P-AC-D的大小.
(2)在平面SCD内作QE∥CP,则QE∥面PAC,从而BQ∥面PAC,进而面EBQ∥面PAC,由此能求出存在点E且SE:EC=2:1,使得BE∥面PAC.

解答 解:(1)连结BD,交AC于点O,连结SO,OP,
∵AC⊥平面SBD,∴OP⊥SD,
设SD的中点为Q,
连结BQ,△SBD为等边三角形,∴BQ⊥SD,
∴P为QD的中点,∴P为SD的四等分点,
PD=$\frac{1}{4}$SD,OD=$\frac{1}{2}$BD,
又∵AC⊥OP,AC⊥DO,
∴∠POD是二面角P-AC-D的平面角,
sin∠POD=$\frac{PD}{OD}$=$\frac{\frac{1}{4}SD}{\frac{1}{2}BD}$=$\frac{1}{2}$,
由图可知二面角P-AC-D为锐二面角,
∴二面角P-AC-D的大小为30°.
(2)存在点E且SE:EC=2:1,使得BE∥面PAC.
证明如下:
在平面SCD内作QE∥CP,∴QE∥面PAC,
又BQ∥OP,∴BQ∥面PAC,
又QE∩BQ=Q,∴面EBQ∥面PAC,
∵BE?面EBQ,∴BE∥面PAC,
∴SE:EC=SQ:QP=2:1.

点评 本题考查二面角的大小的求法,考查满足线面平行的点是否存在的求法与判断,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、转化化归思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,设S为△ABC的面积,满足S=$\frac{\sqrt{3}}{4}$(a2+b2-c2).
(1)求角C的弧度数;
(2)若c=$\sqrt{3}$,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.二项式(x2+$\frac{2}{\sqrt{x}}$)5展开式中的常数项是80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,an+1=$\frac{2(n+1)}{n}$an,设${b_n}=\frac{a_n}{n}$,n∈N*
(Ⅰ)证明{bn}是等比数列;
(Ⅱ)求数列{log2bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(x+1)|,x∈(-1,3)}\\{\frac{4}{x-1},x∈[3,+∞)}\end{array}\right.$则函数g(x)=f[f(x)]-1的零点个数为(  )
A.1B.3C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知点P为圆x2+y2=25上一动点,若点P由点(3,4)逆时针旋转45°到达Q点,则点Q的坐标为(-$\frac{\sqrt{2}}{2}$,$\frac{7\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=-sin2x+msinx+2,当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时函数有最大值为$\frac{3}{2}$,求此时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-x.
(1)求f(x)的单调区间及最大值;
(2)若数列{an}的通项公式为${a_n}=1+\frac{1}{2^n}({n∈{N^*}})$,试结合(1)中有关结论证明:a1•a2•a3…an<e(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为确定加工某零件的时间,某工人做了四次实验,得到的数据的散点图如图所示.
(1)求出y关于x的线性回归方程$\widehaty=\widehatbx+\widehata$,并在坐标系中画出回归直线;
(2)试预测加工8个零件需要多少时间(精确到十分位).
参考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$.

查看答案和解析>>

同步练习册答案