【题目】已知
(1)求的最小值;
(2)若恒成立,求的范围;
(3)若的两根都在内,求的范围.
【答案】(1);(2);(3)
【解析】
(1)分别在、、和的情况下,得到函数在上的单调性,进而求得最小值;
(2)将问题转化为恒成立;由二次函数图象和性质可得不等式组,解不等式求得结果;
(3)令可求得两根,根据根所处范围可构造不等式求得结果.
(1)①当时,,在上单调递减
②当时,开口方向向下,对称轴为
在上单调递减
③当时,开口方向向上,对称轴为
若,则 在上单调递减
若,则 在上单调递减,在上单调递增
综上所述:
(2)恒成立等价于恒成立
当时,不恒成立,不合题意
当时,,解得:
综上所述:的取值范围为
(3)令,即
若,方程仅有一个实数根,不合题意;
若,则方程两根为, ,解得:
综上所述:的取值范围为
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线过点,其参数方程为(为参数).以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(1)求曲线的普通方程和曲线的直角坐标方程;
(2)若曲线与相交于,两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果存在函数(为常数),使得对函数定义域内任意都有成立,那么称为函数的一个“线性覆盖函数”.给出如下四个结论:
①函数存在“线性覆盖函数”;
②对于给定的函数,其“线性覆盖函数”可能不存在,也可能有无数个;
③为函数的一个“线性覆盖函数”;
④若为函数的一个“线性覆盖函数”,则
其中所有正确结论的序号是___________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD=2,
E、F分别为CD、PB的中点.
(1)求证:EF⊥平面PAB;
(2)设,求直线AC与平面AEF所成角θ的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,且).
(Ⅰ)求函数的单调区间;
(Ⅱ)求函数在上的最大值.
【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .
【解析】【试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得在上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.
【试题解析】
(Ⅰ),
设 ,则.
∵, ,∴在上单调递增,
从而得在上单调递增,又∵,
∴当时, ,当时, ,
因此, 的单调增区间为,单调减区间为.
(Ⅱ)由(Ⅰ)得在上单调递减,在上单调递增,
由此可知.
∵, ,
∴.
设,
则 .
∵当时, ,∴在上单调递增.
又∵,∴当时, ;当时, .
①当时, ,即,这时, ;
②当时, ,即,这时, .
综上, 在上的最大值为:当时, ;
当时, .
[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.
【题型】解答题
【结束】
22
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .
(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;
( Ⅱ ) 设直线 与轴和轴的交点分别为,为圆上的任意一点,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点任作一直线交抛物线于两点,过两点分别作抛物线的切线.
(Ⅰ)记的交点的轨迹为,求的方程;
(Ⅱ)设与直线交于点(异于点),且,.问是否为定值?若为定值,请求出定值.若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学期开展覆盖本校各年级学生的《标准》测试工作,并根据学生每个学期总分评定等级.某校决定针对高中学生,每学期进行一次体质健康测试,以下是小明同学六个学期体质健康测试的总分情况.
学期 | 1 | 2 | 3 | 4 | 5 | 6 |
总分(分) | 512 | 518 | 523 | 528 | 534 | 535 |
(1)请根据上表提供的数据,用相关系数说明与的线性相关程度,并用最小二乘法求出关于的线性回归方程(线性相关系数保留两位小数);
(2)在第六个学期测试中学校根据 《标准》,划定540分以上为优秀等级,已知小明所在的学习小组10个同学有6个被评定为优秀,测试后同学们都知道了自己的总分但不知道别人的总分,小明随机的给小组内4个同学打电话询问对方成绩,优秀的同学有人,求的分布列和期望.
参考公式: ,;
相关系数;
参考数据:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600件.
(1)设一次订购件,服装的实际出厂单价为元,写出函数的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com