精英家教网 > 高中数学 > 题目详情
9.在数列{an},{bn}中,a1=3,b1=5,an+1=$\frac{{b}_{n}+4}{2}$,bn+1=$\frac{{a}_{n}+4}{2}$(n∈N*).
(1)求数列{bn-an}的通项公式;
(2)设数列{an+bn}的前n项和为Tn,试求数列{2n-3Tn}的前n项和An
(3)设Sn为数列{bn}的前n项和,若对任意n∈N*,都有p(Sn-4n)∈[1,3],求实数p的取值范围.

分析 (1)由an+1=$\frac{{b}_{n}+4}{2}$,bn+1=$\frac{{a}_{n}+4}{2}$(n∈N*),两式相减可得:bn+1-an+1=-$\frac{1}{2}({b}_{n}-{a}_{n})$,再利用等比数列的通项公式即可得出;
(2)由an+1=$\frac{{b}_{n}+4}{2}$,bn+1=$\frac{{a}_{n}+4}{2}$(n∈N*),可得an+1+bn+1-8=$\frac{1}{2}({a}_{n}+{b}_{n}-8)$,而a1+b1-8=0,可得:an+bn=8.依次数列{an+bn}的前n项和Tn=8n.
于是2n-3Tn=n•2n.再利用“错位相减法”与等比数列的前n项和公式即可得出.
(3)由(1)(2)可得:bn-an=$2×(-\frac{1}{2})^{n-1}$,an+bn=8.解得bn=4+$(-\frac{1}{2})^{n-1}$.可得数列{bn}的前n项和Sn=4n+$\frac{2}{3}$-$\frac{2}{3}(-\frac{1}{2})^{n}$.由p(Sn-4n)∈[1,3],可得1≤$\frac{2}{3}p[1-(-\frac{1}{2})^{n}]$≤3,对n分类讨论即可得出.

解答 解:(1)∵an+1=$\frac{{b}_{n}+4}{2}$,bn+1=$\frac{{a}_{n}+4}{2}$(n∈N*),
∴bn+1-an+1=-$\frac{1}{2}({b}_{n}-{a}_{n})$,
∴数列{bn-an}是等比数列,首项为2,公比为-$\frac{1}{2}$,
∴bn-an=2×$(-\frac{1}{2})^{n-1}$.
(2)∵an+1=$\frac{{b}_{n}+4}{2}$,bn+1=$\frac{{a}_{n}+4}{2}$(n∈N*),
∴an+1+bn+1=$\frac{1}{2}({a}_{n}+{b}_{n})$+4,
化为an+1+bn+1-8=$\frac{1}{2}({a}_{n}+{b}_{n}-8)$,
∵a1+b1-8=0,可得a2+b2-8=0,…,
依此类推可得:an+bn=8.
∴数列{an+bn}的前n项和Tn=8n.
∴2n-3Tn=n•2n
∴数列{2n-3Tn}的前n项和An=2+2×22+3×23+…+n×2n
2An=22+2×23+3×24+…+(n-1)×2n+n×2n+1
∴-An=2+22+…+2n-n×2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n×2n+1=(1-n)×2n+1-2,
∴An=(n-1)×2n+1+2.
(3)由(1)(2)可得:bn-an=$2×(-\frac{1}{2})^{n-1}$,an+bn=8.
∴bn=4+$(-\frac{1}{2})^{n-1}$.
∴数列{bn}的前n项和Sn=4n+$\frac{1-(-\frac{1}{2})^{n}}{1-(-\frac{1}{2})}$=4n+$\frac{2}{3}$-$\frac{2}{3}(-\frac{1}{2})^{n}$.
由p(Sn-4n)∈[1,3],
∴1≤$\frac{2}{3}p[1-(-\frac{1}{2})^{n}]$≤3,
∴$\frac{\frac{3}{2}}{1-(-\frac{1}{2})^{n}}$≤p≤$\frac{\frac{9}{2}}{1-(-\frac{1}{2})^{n}}$.
∵对任意n∈N*,都有p(Sn-4n)∈[1,3]成立,
解得:P=3.

点评 本题考查了等比数列的通项公式与前n项和公式、“错位相减法”、递推关系的应用、恒成立问题等价转化方法,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.计算:
(1)${(\sqrt{2}-1)^0}+{(\frac{16}{9})^{-\frac{1}{2}}}+{(\sqrt{8})^{-\frac{4}{3}}}$;
(2)${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}+2lg(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知F1,F2分别是双曲线x2-$\frac{{y}^{2}}{2}$=1的左、右焦点,过F1倾斜角为60°的直线交双曲线于点M,N.求|MN|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知α∈$(0,\frac{π}{2})$,β∈$(\frac{π}{2},π)$,且sinα>sinβ,则α与β的关系是(  )
A.0<β+α<$\frac{π}{2}$B.$\frac{π}{2}$<α+β<πC.π<α+β<$\frac{3}{2}$πD.$\frac{π}{2}$<α+β<$\frac{3}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆C:(x+1)2+y2=8.
(1)设点Q(x,y)是圆C上一点,求x+y的取值范围;
(2)在直线x+y-7=0上找一点P(m,n),使得过该点所作圆C的切线段最短.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-4x-5≥0},集合B={x|2a≤x≤a+2}.
(1)若a=-1,求A∩B,A∪B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在正方体ABCD-EFGH中,M,N,P,Q,R分别是EH,EF,BC,CD,AD的中点,求证:平面MNA∥平面PQG.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知在数列{an}中,an=$\frac{1}{n(n+1)}$,其前n项和为$\frac{9}{10}$,则在平面直角坐标系中直线nx+y+(n+1)=0在y轴上的截距是(  )
A.-10B.-9C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数y=f(x)图象上每一点的纵坐标不变,横坐标伸长到原来的2倍,然后向左平移1个单位长度.得到y=$\frac{1}{2}$sin2x的图象,求f(x)的表达式.

查看答案和解析>>

同步练习册答案