精英家教网 > 高中数学 > 题目详情
5.在直角坐标xOy中,圆C1:(x+$\sqrt{3}$)2+y2=4,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),并以O为极点,x轴正半轴为极轴建立极坐标系.
(1)写出C1的极坐标方程,并将C2化为普通方程;
(2)若直线C3的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),C2与C3相交于A,B两点,求△ABC1的面积(C1为圆C1的圆心).

分析 (1)圆C1转化为${x}^{2}+{y}^{2}+2\sqrt{3}x-1=0$,由此能求出C1的极坐标方程,曲线C2的参数方程消去参数,能求出C2的普通方程.
(2)求出直线C3的直角坐标方程为y=$\sqrt{3}x$,由题意知C2与C3交于坐标原点,设A,O重合,分别求出|AB|=2,|AC1|=$\sqrt{3}$,∠BAC1=120°,由此能求出△ABC1的面积.

解答 解:(1)∵圆C1:(x+$\sqrt{3}$)2+y2=4,
即${x}^{2}+{y}^{2}+2\sqrt{3}x-1=0$,
∴C1的极坐标方程为${ρ}^{2}+2\sqrt{3}ρcosθ-1=0$,
∵曲线C2的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),
∴C2的普通方程为:(x-2)2+y2=4.
(2)∵直线C3的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),
∴直线C3的直角坐标方程为y=$\sqrt{3}x$,
由题意知C2与C3交于坐标原点,设A,O重合,
∴|AB|=2,|AC1|=$\sqrt{3}$,∠BAC1=120°,
∴△ABC1的面积(C1为圆C1的圆心):
${S}_{△AB{C}_{1}}=\frac{1}{2}|AB|×|A{C}_{1}|sin120$°=$\frac{3}{2}$.

点评 本题考查曲线的参数方程、普通方程的求法,考查三角形面积的求法,是中档题,解题时要认真审题,注意极坐标、直角坐标互化公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知角α的终边经过点P(-4a,3a)(a≠0),求sinα+cosα-tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在极坐标系中,曲线C:ρ=2cosθ,l:ρcos(θ-$\frac{π}{3}$)=$\frac{3}{2}$.
(1)求曲线C和直线l的直角坐标方程;
(2)O为极点,A,B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若数列{an}的前n项和为${S_n}=\frac{{n{a_n}}}{2},{a_2}=2$,则数列{an}的通项公式是an=2(n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数y=x3-3x+c的图象与x轴恰有两个公共点,则c=(  )
A.2 或-1B.-2 或1C.2或-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sin(\frac{2π}{3}+α)=\frac{1}{3}$,则$cos(\frac{5π}{6}-α)$=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=(x2-ax+a+1)ex(a∈N)在区间(1,3)只有1个极值点,则曲线f(x)在点(0,f(0))处切线的方程为x-y+6=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用秦九韶算法计算函数f(x)=2x5-3x3+2x2+x-3的值,若x=2,则V3的值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=cosωx(ω>0),其图象上相邻的两条对称轴之间的距离为$\frac{π}{2}$,
(Ⅰ)求f(x+$\frac{π}{6}$)在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的单调区间;
(Ⅱ)若α∈($\frac{5π}{12}$,$\frac{π}{2}$),f(α+$\frac{π}{3}$)=$\frac{1}{3}$,求sin2α的值.

查看答案和解析>>

同步练习册答案