精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,四边形均为正方形,且M的中点,N的中点.

1)求证:平面ABC

2)求二面角的正弦值;

3)设P是棱上一点,若直线PM与平面所成角的正弦值为,求的值

【答案】1)证明过程见详解;(2;(3.

【解析】

1)先取中点为,连接,根据面面平行的判定定理,得到平面平面,进而可得平面ABC

2)先由题意,得到两两垂直,以为坐标原点,分别以轴,轴,轴建立空间直角坐标系,设边长为,分别求出平面和平面的一个法向量,根据向量夹角公式,求解,即可得出结果;

3)先设,得到,根据空间向量的夹角公式,列出等式求解,即可得出结果.

1)取中点为,连接

因为的中点,的中点,

所以

平面平面

所以平面平面

平面

所以平面ABC

2)因为四边形均为正方形,所以两两垂直,

为坐标原点,分别以轴,轴,轴建立如图所示的空间直角坐标系,设边长为,则

所以

因此

设平面的一个法向量为

,所以,令,则

因此

设平面的一个法向量为

,所以,令,则

因此

设二面角的大小为

所以

3)因为是棱上一点,设,则

所以

由(2)知,平面的一个法向量为

又直线与平面所成角的正弦值为,记直线与平面所成角为

则有

整理得,解得(舍)

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为轴上方的点在抛物线上,且,直线与抛物线交于两点(点不重合),设直线的斜率分别为.

(Ⅰ)求抛物线的方程;

(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆为椭圆的左、右顶点,椭圆的右焦点为,椭圆的离心率为.

1)设直线与椭圆交于两点,且,求的值;

2)设过点且斜率为1的直线与椭圆交于(其中分别在轴的上、下方)两点,当时,记的面积分别为,求的最小值,并求此时椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的不断发展和人们消费观念的不断提升,越来越多的人日益喜爱旅游观光.某人想在20195月到某景区旅游观光,为了避开旅游高峰拥挤,方便出行,他收集了最近5个月该景区的观光人数数据见下表:

月份

2018.12

2019.1

2019.2

2019.3

2019.4

月份编号

1

2

3

4

5

旅游观光人数(百万人)

0.5

0.6

1

1.4

1.7

1)由收集数据的散点图发现,可用线性回归模型拟合旅游观光人数少(百万人)与月份编号之间的相关关系,请用最小二乘法求关于的线性回归方程,并预测20195月景区的旅游观光人数.

2)当地旅游局为了预测景区给当地的财政带来的收入状况,从20194月的旅游观光人群中随机抽取了200人,并对他们旅游观光过程中的开支情况进行了调查,得到如下频率分布表:

开支金额(千元)

频数

10

30

40

60

30

20

10

若采用分层抽样的方法从开支金额低于4千元的游客中抽取8人,再在这8人中抽取3人,记这3人中开支金额低于3千元的人数为,求的分布列和数学期望.

(参考公式:,其中.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春节期间,全国人民都在抗击新型冠状病毒肺炎的斗争中.当时武汉多家医院的医用防护物资库存不足,某医院甚至面临断货危机,南昌某生产商现有一批库存的医用防护物资,得知消息后,立即决定无偿捐赠这批医用防护物资,需要用AB两辆汽车把物资从南昌紧急运至武汉.已知从南昌到武汉有两条合适路线选择,且选择两条路线所用的时间互不影响.据调查统计2000辆汽车,通过这两条路线从南昌到武汉所用时间的频数分布表如下:

所用的时间(单位:小时)

路线1的频数

200

400

200

200

路线2的频数

100

400

400

100

假设汽车A只能在约定交货时间的前5小时出发,汽车B只能在约定交货时间的前6小时出发(将频率视为概率).为最大可能在约定时间送达这批物资,来确定这两车的路线.

1)汽车A和汽车B应如何选择各自的路线.

2)若路线1、路线2一次性费用分别为3.2万元、1.6万元,且每车医用物资生产成本为40万元(其他费用忽略不计),以上费用均由生产商承担,作为援助金额的一部分.根据这两辆车到达时间分别计分,具体规则如下(已知两辆车到达时间相互独立,互不影响):

到达时间与约定时间的差x(单位:小时)

该车得分

0

1

2

生产商准备根据运输车得分情况给出现金排款,两车得分和为0,捐款40万元,两车得分和每增加1分,捐款增加20万元,若汽车AB用(1)中所选的路线运输物资,记该生产商在此次援助活动中援助总额为Y(万元),求随机变量Y的期望值,(援助总额一次性费用生产成本现金捐款总额)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线的焦点,以为圆心作半径为的圆,圆轴的负半轴交于点,与抛物线分别交于点.

1)若为直角三角形,求半径的值;

2)判断直线与抛物线的位置关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设点,直线与曲线交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为,直线与抛物线交于两点.到准线的距离之和最小为8.

1)求抛物线方程;

2)若抛物线上一点纵坐标为,直线分别交准线于.求证:以为直径的圆过焦点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上6,这样就可得到一个新的实数,对实数仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜,若甲胜的概率为,则的取值范围是____

查看答案和解析>>

同步练习册答案