精英家教网 > 高中数学 > 题目详情

【题目】设A是单位圆O和x轴正半轴的交点,P,Q是圆O上两点,O为坐标原点,∠AOP= ,∠AOQ=α,α∈[0, ].
(1)若Q( ),求cos(α﹣ )的值;
(2)设函数f(α)=sinα( ),求f(α)的值域.

【答案】
(1)解:由已知得cosα= ,sinα=

∴cos( )= + × =


(2)解: =( ), =(cosα,sinα),

= cosα+ sinα,

∴f(α)= sinαcosα+ sin2α= sin2α﹣ cos2α+ = sin(2α﹣ )+

∵α∈[0, ],∴2α﹣ ∈[﹣ ],

∴当2α﹣ =﹣ 时,f(α)取得最小值 + =0,

当2α﹣ = 时,f(α)取得最大值 =

∴f(α)的值域是[0, ]


【解析】(1)利用差角的余弦公式计算;(2)利用三角恒等变换化简f(α),再利用α的范围和正弦函数的性质求出f(α)的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体ABCDA1B1C1D1中,下列说法正确的是____ (填序号).

(1)直线AC1在平面CC1B1B内.

(2)设正方形ABCDA1B1C1D1的中心分别为OO1,则平面AA1C1C与平面BB1D1D的交线为OO1.

(3)由AC1B1确定的平面是ADC1B1.

(4)由AC1B1确定的平面与由AC1D确定的平面是同一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=log2x+ax+b(a>0),若存在实数b,使得对任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,则t的最小值是(
A.2
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:mx﹣y﹣m+2=0与圆C:x2+y2+4x﹣4=0交于A,B两点,若△ABC为直角三角形,则m=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F为双曲线 =1(a>b>0)的右焦点,过点F的直线分别交两条渐近线于A,B两点,OA⊥AB,若2|AB|=|OA|+|OB|,则该双曲线的离心率为(
A.
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)为二次函数,且f(x-1)+f(x)=2x2+4.

(1)求f(x)的解析式;

(2)当x∈[t,t+2],t∈R时,求函数f(x)的最小值(用t表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某设备的使用年限x(年)和所支出的维修费用y(万元)有如下的统计资料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

试求:(1yx之间的回归方程;

2)当使用年限为10年时,估计维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某校组织的一次篮球定点投篮训练中,规定每人最多投3次,在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率为0.25,在B处的命中率为0.8,该同学选择先在A处投一球,以后都在B处投,用X表示该同学投篮训练结束后所得的总分.
(1)求该同学投篮3次的概率;
(2)求随机变量X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.

(1)试求y=f(x)的函数关系式;

(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

同步练习册答案