精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为也为抛物线的焦点,点在第一象限的交点,且.

(I)求椭圆的方程;

(II)延长,交椭圆于点,交抛物线于点,求三角形的面积.

【答案】(I)(II).

【解析】分析:(I)根据右焦点也是拋物线的焦点可得,再求出点的坐标,代入椭圆方程,以及根据,联立可解得,从而可得椭圆的方程;(Ⅱ) 求出直线方程分别与椭圆和抛物线联立,求出,可得,再根据点到直线的距离公式,即可求出三角形的面积.

详解:(I)也为抛物线的焦点

由线段,.

的坐标为,代入椭圆方程得.

,联立可解得.

∴椭圆的方程为.

(Ⅱ)(Ⅰ),所以直线方程为:.

联立直线方程和椭圆方程可得

联立直线方程相抛物线方程可得.

到直线的距离为,

∴三角形的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别是其左、右焦点,且过点.

(1)求椭圆的标准方程;

(2)若在直线上任取一点,从点的外接圆引一条切线,切点为.问是否存在点,恒有?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某二手交易市场对某型号的二手汽车的使用年数)与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:

使用年数

2

4

6

8

10

销售价格

16

13

9.5

7

4.5

(I)试求关于的回归直线方程.

(参考公式:

(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,,.

(Ⅰ)求证:

(Ⅱ)若与平面所成的角为,点的中点,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.

(Ⅰ)求证:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,垂直于所在的平面的直径,是弧上的一个动点(不与端点重合),上一点,且是线段上的一个动点(不与端点重合).

(1)求证:平面

(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱椎中,侧棱底面分别是线段的中点,过线段的中点的平行线,分别交于点.

1)证明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时,函数的图像恒在直线上方,求实数的取值范围;

(2)证明:当时.

查看答案和解析>>

同步练习册答案