【题目】已知椭圆的左、右焦点分别为也为抛物线的焦点,点为在第一象限的交点,且.
(I)求椭圆的方程;
(II)延长,交椭圆于点,交抛物线于点,求三角形的面积.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,,分别是其左、右焦点,且过点.
(1)求椭圆的标准方程;
(2)若在直线上任取一点,从点向的外接圆引一条切线,切点为.问是否存在点,恒有?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某二手交易市场对某型号的二手汽车的使用年数()与销售价格(单位:万元/辆)进行整理,得到如下的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
销售价格 | 16 | 13 | 9.5 | 7 | 4.5 |
(I)试求关于的回归直线方程.
(参考公式:,)
(II)已知每辆该型号汽车的收购价格为万元,根据(I)中所求的回归方程,预测为何值时,销售一辆该型号汽车所获得的利润最大?(利润=销售价格-收购价格)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,如图,在直二面角中,四边形是边长为的正方形,,且.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在线段(不包含端点)上是否存在点,使得与平面所成的角为;若存在,写出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,垂直于所在的平面,为的直径,是弧上的一个动点(不与端点重合),为上一点,且是线段上的一个动点(不与端点重合).
(1)求证:平面;
(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com