精英家教网 > 高中数学 > 题目详情
19.设在△ABC中,两条高所在直线的方程分别为2x-3y+1=0和x+y=0,且它的一个顶点是A(1,2),求B、C的坐标.

分析 判断点A不在两条高线,由高线求出AB、AC边所在直线的斜率再把点A的坐标代入点斜式方程,化简求出AB、AC边所在直线的方程,联立高线方程求出B、C的坐标即可.

解答 解:(1)∵A(1,2)点不在两条高线2x-3y+1=0和x+y=0上,
∴AB、AC边所在直线的斜率分别为-$\frac{3}{2}$和1,
代入点斜式得:y-2=-$\frac{3}{2}$(x-1),y-2=x-1
∴AB、AC边所在直线方程为3x+2y-7=0,x-y+1=0.
由$\left\{\begin{array}{l}{2x-3y+1=0}\\{x-y+1=0}\end{array}\right.$解得x=-2,y=-1,
∴C(-2,-1)、同理可求 B(7,-7).

点评 本题考查了求直线方程和联立直线方程求交点坐标,考查学生的运算能力,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.定积分$\int_0^1{({2x-{e^x}})dx}$的值为2-e.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知抛物线方程为y2=8x,
(1)直线l过抛物线的焦点F,且垂直于x轴,l与抛物线交于A,B两点,求AB的长度.
(2)直线l1过抛物线的焦点F,且倾斜角为45°,直线l1与抛物线相交于C,D两点,O为原点.求△OCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.命题“若x>0,则${2^{3x-{x^2}}}<4$”的逆否命题为若${2^{3x-{x^2}}}≥4$,则x≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=$\left\{{\begin{array}{l}{{{log}_2}x,}&{x>0}\\{{2^x},}&{x≤0}\end{array}}$,则$f(f(\frac{1}{2}))$的值为$\frac{1}{2}$,不等式f(x)>$\frac{1}{2}$的解集为$(-1,0]∪(\sqrt{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正方形ABCD的边长为12,PA⊥平面ABCD,且PA=12,则点P到BD的距离为(  )
A.$6\sqrt{6}$B.6$\sqrt{3}$C.$\sqrt{2}$D.6$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{1}{x-1}$≥-1的解集为(  )
A.(-∞,0]∪(1,+∞)B.(-∞,0)∪[1,+∞)C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设x1,x2是方程x2-2mx+4m2-4m+1=0的两个不等实根,
(Ⅰ)将x12+x22表示为m的函数g(m),并求其定义域;
(Ⅱ)设f(m)=$\frac{{m}^{2}}{g(m)-1}$,求f(m)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=lg(-x2-2x+8)的单调递减区间是(  )
A.(-∞,-1)B.(-1,2)C.(-4,-1)D.(-1,+∞)

查看答案和解析>>

同步练习册答案